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Abstract: Meta-analysis is an indispensable tool for synthesizing statistical results obtained from
individual studies. Recently, non-Bayesian estimators for individual means were proposed by
applying three methods: the James–Stein (JS) shrinkage estimator, isotonic regression estimator, and
pretest (PT) estimator. In order to make these methods available to users, we develop a new R package
meta.shrinkage. Our package can compute seven estimators (named JS, JS+, RML, RJS, RJS+, PT, and
GPT). We introduce this R package along with the usage of the R functions and the “average-min-max”
steps for the pool-adjacent violators algorithm. We conduct Monte Carlo simulations to validate the
proposed R package to ensure that the package can work properly in a variety of scenarios. We also
analyze a data example to show the ability of the R package.

Keywords: statistical decision theory; isotonic regression; meta-analysis; pretest estimator; restricted
parameters; shrinkage estimation

1. Introduction

Meta-analysis is a tool for synthesizing statistical results obtained from individu-
ally published studies [1]. Meta-analyses have been employed in a variety of scientific
studies [2–5], including studies on the influence of COVID-19 [6–8].

Usually, the goal of meta-analyses is to summarize individual studies to find some
common effect [5,9]. The idea of estimating the common mean was originated from mathe-
matical statistics and stratified sampling designs under fixed effect models (pp. 55–103
of [10–13]). In biostatistical methodologies, the estimation method based on random effect
models [14] is popular. In either model, the goal of meta-analyses is usually to estimate the
common mean by combining the estimators of individual means (Section 2.1).

In some scenarios, however, the goal of estimating the common mean is question-
able. In these scenarios, meta-analyses can still be informative by looking at individual
studies’ means (e.g., by a forest plot). Aside from these simple meta-analyses, Bayesian
posterior means provide a more sophisticated summary of individual means in a meta-
analysis [15–19].

Recently, Taketomi et al. [20] proposed non-Bayesian estimators of individual means
by applying three methods: the James–Stein (JS) shrinkage estimator, isotonic regression
estimator, and pretest (PT) estimator. Their frequentist estimators were shown to be
superior to the individual studies’ estimators via decision theoretic criteria and Monte
Carlo simulation experiments. These frequentist estimators also found their suitable
applications to real data examples.

In this article, we propose a new R package meta.shrinkage in order to implement the
frequentist estimators in [20]. Our package can calculate seven estimators (namely δJS,
δJS+, δRML, δRJS, δRJS+, δPT and δGPT; see Section 3 for their definitions). We introduce this
R package along with the usage of the R functions and the “average-min-max” steps for
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the pool-adjacent violators algorithm. We conduct Monte Carlo simulations to validate
the proposed R package to ensure that the package can work properly in a variety of
scenarios. We made the package freely available in the Comprehensive R Archive Net-
work (CRAN): Available online: https://CRAN.R-project.org/package=meta.shrinkage
(accessed on 14 November 2021).

This article is organized as follows. Section 2 gives the background, including a quick
review of meta-analyses. Section 3 introduces the proposed R package. Section 4 conducts
simulation studies to validate the proposed R package. Section 5 includes a data example
to illustrate the proposed R package. Section 6 concludes the article with discussions. The
appendices give the R code to reproduce the numerical results of this article.

2. Background
2.1. Meta-Analysis

This subsection reviews the basic concepts for meta-analysis.
To clarify the concepts, we introduce some notations and assumptions for a meta-

analysis. Define G as the number of studies, where G stands for groups in the meta-analysis.
For each i = 1, 2, . . . , G, let Yi be an estimator for a target estimand µi that is unknown.
Let yi be a realized value of the random variable Yi. We assume that the error is normally
distributed so that Yi ∼ N

(
µi, σ2

i
)
, where σ2

i > 0 is a known variance for the error
distribution. Thus, µi is the mean of Yi. The observed data are {yi : i = 1, 2, . . . , G} in this
meta-analysis. We will not consider a setting where the variance is unknown [21,22], as
this setting does not follow the framework of meta-analyses based on “summary data”.
Without a loss of generality, we assume that µi = 0 corresponds to the null value.

Traditionally, the objective of meta-analyses is to estimate the common mean, denoted
as µ. It is defined by the fixed effect model assumption of µ ≡ µ1 = . . . = µG or the
random-effects model assumption of µi ∼ N

(
µ, τ2) for i = 1, 2, . . . , G, where τ2 is the

between-study variance. In this article, we assume neither, since the aforementioned
models do not always fit the data at hand. For instance, if the studies have ordered means
(e.g., µ1 ≤ . . . ≤ µG), the model is neither fixed nor random [20]. Indeed, many real
meta-analyses have some covariates to systematically explain the reason for increasing
means µ1 ≤ . . . ≤ µG or decreasing means µ1 ≥ . . . ≥ µG (see Section 5). In such
circumstances, there is no general way to define the common mean µ. Below, we discuss
what meta-analyses can do in the absence of the common mean.

2.2. Improved Estimation of Individual Means

Meta-analyses often display individual estimates (y1, . . . , yG) along with their 95%
confidence intervals (CIs): (y1, . . . , yG) ± 1.96 × (σ1, . . . , σG). Similarly, the funnel plot
shows (y1, . . . , yG) against (σ1, . . . , σG) (see [1,5,23,24] for these plots). These meta-analyses
are possible without the assumptions of the fixed effect or random effect models. Therefore,
looking at the individual estimates (y1, . . . , yG) is a part of meta-analysis.

Taketomi et al. [20] pointed out the need for improving the individual estimates
by shrinkage estimation methods [11,12,25,26]. They first regard Y ≡ (Y1, . . . , YG) as an
estimator of µ ≡ (µ1, . . . , µG). Then, they consider an estimator δ(Y) ≡ (δ1(Y), . . . , δG(Y))
that improves upon Y in terms of the weighted mean square error (WMSE) criteria:

E

[
G

∑
i=1

(δi(Y)− µi)
2

σ2
i

]
< E

[
G

∑
i=1

(Yi − µi)
2

σ2
i

]
= G, ∃(µ1, . . . , µG), (1)

E

[
G

∑
i=1

(δi(Y)− µi)
2

σ2
i

]
≤ E

[
G

∑
i=1

(Yi − µi)
2

σ2
i

]
= G, ∀(µ1, . . . , µG). (2)

The above δ(Y) is called an improved estimator of Y. If “∀(µ1, . . . , µG)” in Equation (2)
holds only for a restricted parameter space, δ(Y) is locally improved. Two locally improved
estimators are relevant in this article. The first one is under ordered means, where the param-
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eter space is restricted to µ1 ≤ µ2 ≤ . . . ≤ µG. The second one is under the sparse normal
means [27], where many µi values are zero (e.g., (µ1, . . . , µ10) = (−1, 0, 0, 0, 0, 0, 0, 0, 0, 1)).

The inverse variance weights in Equation (1) and (2) make it convenient to apply
the classical decision theory [20]. Consequently, Taketomi et al. [20] were able to theoret-
ically verify the (local) improvement of their estimators upon Y in terms of the WMSE.
In practice, one may also be interested in the total MSE (TMSE) criterion, defined as
E
[
∑G

i=1(δi(Y)− µi)
2
]

[11,25], while the TMSE makes the theoretical analysis complex [11].
Section 4 will employ the TMSE criterion to assess the performance of all the improved
estimators that will be introduced in the proposed R package.

Below, we introduce our R package, which can compute several improved estimators
suggested by [20]. The goal of our package is to compute δ(y) ≡ (δ1(y), . . . , δG(y)) from y
that are the realized values for a random vector Y ≡ (Y1, . . . , YG).

3. R Package meta.shrinkage

This section introduces our proposed R package meta.shrinkage, which can compute
seven improved estimators for individual means, denoted as δJS, δJS+ , δRML, δRJS, δRJS+,
δPT, and δGPT. We will divide our explanations into four sections: Section 3.1 for δJS and
δJS+, Section 3.2 for δRML, Section 3.3 for δRJS and δRJS+, Section 3.4 for δPT, and δGPT.

Before embarking on details, we explain the basic variables used in the package. Let
yi ∼ N

(
µi, σ2

i
)

be an estimate for µi under a known variance σ2
i > 0 for i = 1, 2, . . . , G. Thus,

one needs to prepare {(yi, σi); i = 1, 2, . . . , G} to perform a meta-analysis. Accordingly, the
input variables in the R console are two vectors:

• y: a vector for yis;
• s: a vector for σis.

Below is an example for the input variables for a dataset of G = 14 in the R console.
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and 𝜹ୗା, Section 3.2 for 𝜹ୖ, Section 3.3 for 𝜹ୖୗ and 𝜹ୖୗା, Section 3.4 for 𝜹, and 𝜹ୋ. 

Before embarking on details, we explain the basic variables used in the package. Let 𝑦~𝑁(𝜇, 𝜎ଶ)  be an estimate for 𝜇  under a known variance 𝜎ଶ > 0  for 𝑖 = 1,2, … , 𝐺 . 
Thus, one needs to prepare {(𝑦, 𝜎); 𝑖 = 1,2, … , 𝐺} to perform a meta-analysis. Accord-
ingly, the input variables in the R console are two vectors: 
 y: a vector for 𝑦s; 
 s: a vector for 𝜎s. 

Below is an example for the input variables for a dataset of 𝐺 = 14 in the R console.  
--------------------------------------------------------------------------------------------------------- 
> y<-c(−0.18312,−0.72266,−0.48507,−0.23961,−0.13226,−0.27228,−0.5867,−0.13969, 
> −0.1004,−0.31143,−0.04949,−0.11685,−0.13044,0.04391) 
> s<-c(0.15372,0.28686,0.33192,0.21558,0.14691,0.14416,0.24885, 
> 0.14542,0.16404,0.17038,0.19818,0.16476,0.19268,0.17632) 
> y 
[1] −0.18312 −0.72266 −0.48507 −0.23961 −0.13226 −0.27228 −0.58670 −0.13969 
[9] −0.10040 −0.31143 −0.04949 −0.11685 −0.13044 0.04391 
> s 
[1] 0.15372 0.28686 0.33192 0.21558 0.14691 0.14416 0.24885 0.14542 0.16404 
[10] 0.17038 0.19818 0.16476 0.19268 0.17632 
--------------------------------------------------------------------------------------------------------- 
This dataset comes from the data analysis of [20], in which gastric cancer data [28] 

was analyzed. The values for 𝑦s are Cox regression estimates for the effect of chemother-
apy on disease-free survival (DFS) for gastric cancer patients, and the 𝜎 values are the 
SEs. 

3.1. James–Stein Estimator 
The James–Stein (JS) estimator is defined as 

𝜹ୗ ≡ (𝛿ଵୗ, … , 𝛿ீୗ) ≡ ቆ1 − 𝐺 − 2∑ 𝑌ଶ/𝜎ଶீୀଵ ቇ 𝒀. 

This dataset comes from the data analysis of [20], in which gastric cancer data [28] was
analyzed. The values for yis are Cox regression estimates for the effect of chemotherapy on
disease-free survival (DFS) for gastric cancer patients, and the σi values are the SEs.

3.1. James–Stein Estimator

The James–Stein (JS) estimator is defined as

δJS ≡
(

δJS
1 , . . . , δJS

G

)
≡
(

1− G− 2

∑G
i=1 Y2

i /σ2
i

)
Y.

This estimator is a variant from the primitive JS estimator [29], which was derived
under homogeneous variances (σi = 1 for ∀i). The JS estimator reduces the WMSE by
shrinking the vector Y toward 0. The degree of shrinkage is determined by the factor

(G− 2)/(
G
∑

i=1
Y2

i /σ2
i ) that typically takes its value from 0 (0% shrinkage) to 1 (100% shrink-

age). In rare cases, it becomes greater than one (overshrinkage).
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It was proven that δJS has a smaller WMSE than Y when G ≥ 3 [20]. That is,
Equations (1) and (2) hold. Thus, δJS is an improve estimator without any restriction.

The positive-part JS estimator can further reduce the WMSE by avoiding the overshrink-
age phenomenon of (G− 2)/(∑G

i=1 Y2
i /σ2

i ) > 1:

δJS+ ≡
(

δJS+
1 , . . . , δJS+

G

)
≡
(

1− G− 2

∑G
i=1 Y2

i /σ2
i

)+

Y,

where (.)+ ≡ max(0, .).
In our R package, the function “js(.)” can compute δJS and δJS+.
Below is the usage in the R console.
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The values in the JS column are the shrunken values of y. The values are equivalent
between the columns of JS and JS_plus because there is no overshrinkage.

3.2. Restricted Maximum Likelihood Estimators under Ordered Means

We consider the restricted maximum likelihood (RML) estimator when the individual
means are ordered. Without loss of generality, we consider the increasing order µ1 ≤
. . . ≤ µG. This indicates that µ belongs to {(µ1, . . . , µG) : µ1 ≤ . . . ≤ µG}. If there are such
parameter constraints, they should be incorporated into the estimators in order to improve
the estimation accuracy [20].

The RML estimator satisfying δ1 ≤ . . . ≤ δG is calculated by

δRML
i = max

1≤s≤i
min

i≤t≤G

∑t
j=s Yj

t− s + 1
.

The above formula is called the pool-adjacent violators algorithm (PAVA). The com-
putation requires the “average-min-max” steps (Figure 1). We developed an R function
“rml(.)” in our R package to perform the matrix-based computation of Figure 1. This R
function initially computes all the elements of the matrix (Figure 1). Then, it applies the
command “max(apply(z, 1, min))”, where “1” indicates that “min” applies to the rows of
the matrix “z”. This yields easy-to-understand code in the R program.
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Figure 1. The schematic diagram for implementing the pool-adjacent violators algorithm (PAVA) in
the R function “rml(.)” in our R package.

To understand the reason why the matrix-based computation (Figure 1) is necessary,
we give an example for calculating δRML

2 from a dataset Y = (Y1, Y2, Y3). By setting i = 2
and G = 3 in Figure 1, the calculation for δRML

2 proceeds as follows:

[
Y1+Y2

2
Y1+Y2+Y3

3
Y2

Y2+Y3
2

]
⇒

 min
(

Y1+Y2
2 , Y1+Y2+Y3

3

)
min

(
Y2, Y2+Y3

2

) ⇒ max
{

min
(

Y1 + Y2

2
,

Y1 + Y2 + Y3

3

)
, min

(
Y2,

Y2 + Y3

2

) }
.

The matrix in the preceding formula keeps four sub-averages of (Y1, Y2, Y3), including
Y2. Any one of the four components of the matrix can be δRML

2 . Hence, the matrix is
necessary as well as sufficient to calculate δRML

2 . That aside, matrices are easy to manipulate
in R.

The RML estimator δRML ≡
(
δRML

1 , . . . , δRML
G

)
gives a smaller WMSE than Y [20].

For theories and applications of the PAVA, we refer to [30–34]. We decided not to use
the “pava(.)” function available in the R package “Iso” [33] to ensure the independence
of our package from others. Nonetheless, we checked that “rml(.)” and “pava(.)” gave
numerically identical results.

So far, we have assumed that the studies (i.e., i = 1, 2, . . . , G) are ordered to achieve
µ1 ≤ . . . ≤ µG. However, usually, the studies in a raw dataset may be arbitrarily ordered,
and hence, one needs to find covariates to order the studies. For instance, one can use
publication years if the µi values increase with them. More generally, we assume that
there exists an increasing sequence of covariates (x1 < . . . < xG) or a decreasing sequence of
covariates (x1 > . . . > xG) to achieve the order µ1 ≤ . . . ≤ µG.

In our R package, the function “rml(.)” can compute δRML. The function allows users
to enter covariates when studies are not ordered. For instance, we enter the estimates (y),
SEs (s), and the proportion of males (x) from the COVID-19 data with G = 11 [7,20].
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In this data, the estimates (y) are the log risk ratios (RRs) calculated from two-by-two
contingency tables examining the association (mortality vs. hypertension). As found in
the previous studies [7,20], there was a decreasing sequence of the proportion of males
(x1 > . . . > x11) that could achieve the order µ1 ≤ . . . ≤ µ11. Then, we have the following:
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where “RJS” stands for “restricted JS”, 𝐼(. ) is the indicator function, where 𝐼(𝐴) = 1 or 𝐼(𝐴) = 0 if 𝐴 is true or false, respectively. Note that 𝜹ୖୗ has a smaller WMSE than 𝜹ୖ 
[20,35], meaning that 𝜹ୖୗ gives more precise estimates than 𝜹ୖ. 

We see that the estimates are ordered, which is consistent with the prescribed order
µ1 ≤ . . . ≤ µ11. By the option “test=TRUE”, one can test if the µi values are properly
ordered by a sequence of covariates. Figure 2 shows the output including the LOWESS
plot and a correlation test based on Kendall’s tau via “cor.test(x,y,method=“kendall”)”. The
test confirmed that the means were ordered by a “decreasing” sequence (x1 > . . . > x11).
We suggest the 10% significance level to declare the increasing or decreasing trend. In
meta-analyses, 5% is too strict and not realistic since the number of studies is limited.
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3.3. Shrinkage Estimators under Ordered Means

The estimator introduced above (in Section 3.2) can be improved by the JS type
shrinkage. Based on the idea of Chang [35], Taketomi et al. [20] proposed a JS-type estimator
under the following order restriction:

δRJS ≡
(

1− G− 2

∑G
i=1 Y2

i /σ2
i

)
YI(Y1 ≤ . . . ≤ YG) + δRML(1− I(Y1 ≤ . . . ≤ YG)),

where “RJS” stands for “restricted JS”, I(.) is the indicator function, where I(A) = 1 or
I(A) = 0 if A is true or false, respectively. Note that δRJS has a smaller WMSE than
δRML [20,35], meaning that δRJS gives more precise estimates than δRML.
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The RJS estimator can be further corrected by the following positive-part RJS estimator:

δRJS+ ≡
(

1− G− 2

∑G
i=1 Y2

i /σ2
i

)+

YI(Y1 ≤ . . . ≤ YG) + δRML(1− I(Y1 ≤ . . . ≤ YG)).

Consequently, δRJS+ has a smaller WMSE than δRJS [20].
In our R package, the function “rjs(.)” can compute δRJS and δRJS+ possibly with the

aid of covariates.
For instance, one can analyze the COVID-19 data as follows:

Algorithms 2022, 10, x FOR PEER REVIEW 7 of 17 
 

The RJS estimator can be further corrected by the following positive-part RJS estima-
tor: 

𝜹ୖୗା ≡ ቆ1 − 𝐺 − 2∑ 𝑌ଶ/𝜎ଶீୀଵ ቇା 𝒀𝐼(𝑌ଵ ≤ ⋯ ≤ 𝑌 ) + 𝜹ୖ(1 − 𝐼(𝑌ଵ ≤ ⋯ ≤ 𝑌 )). 
Consequently, 𝜹ୖୗା has a smaller WMSE than 𝜹ୖୗ [20]. 
In our R package, the function “rjs(.)” can compute 𝜹ୖୗ and 𝜹ୖୗା possibly with 

the aid of covariates. 
For instance, one can analyze the COVID-19 data as follows: 
--------------------------------------------------------------------------------------------------------- 
>id<-c(“Akbari 2020”, “Bai 2000”, “Cao 2020”, “Chen 2020”, “Chen T 2020”, “Fu 2020”, 
> “Grasselli 2020”, “Li 2020”, “Luo 2020”, “Yuan 2020”, “Zhou 2020”) 
>rjs(y,s,x,id,decreasing=TRUE) 

id            x      RJS        RJS_plus 
1   Grasselli 2020  82.0   0.4637000   0.4637000 
2   Bai 2000       63.0   0.5933000   0.5933000 
3   Chen T 2020   62.1   0.6780000   0.6780000 
4   Zhou 2020     62.0   0.7750833   0.7750833 
5   Li 2020        58.0   0.7750833   0.7750833 
6   Akbari 2020    56.4   0.7750833   0.7750833 
7   Cao 2020      52.0   0.7750833   0.7750833 
8   Fu 2020       49.5   0.7750833   0.7750833 
9   Chen 2020     49.0   0.7750833   0.7750833 
10  Luo 2020      47.9   1.2326000   1.2326000 
11  Yuan 2020     45.0   2.8904000   2.8904000 
--------------------------------------------------------------------------------------------------------- 
In the above commands, the input includes the optional argument “id” that signifies 

the leading authors and publication years of the 11 studies. We did so simply to make an 
informative output. If the input does not include this argument, the output shows the 
ordered sequence of 1, 2, …, 11 as shown in Section 3.2. 

3.4. Estimators under Sparse Means 
We now consider discrete shrinkage schemes by pre-testing 𝐻: 𝜇 = 0 vs. 𝐻ଵ: 𝜇 ≠0 for 𝑖 = 1,2, … , 𝐺. The idea was proposed by Bancroft [36], who developed pretest estima-

tors (see also more recent works [20,37–43]). In the meta-analytic context, Taketomi et al. 
[20] adopted the general pretest (GPT) estimator of Shih et al. [41], which is defined as fol-
lows: 

𝛿ୋ = 𝑌𝐼 ൬ฬ𝑌𝜎ฬ > 𝑧ఈభ/ଶ൰ + 𝑞𝑌𝐼 ൬𝑧ఈమ/ଶ < ฬ𝑌𝜎ฬ ≤ 𝑧ఈభ/ଶ൰ ,      𝑖 = 1,2, … , 𝐺. 
Here 0 ≤ 𝛼ଵ ≤ 𝛼ଶ ≤ 1, 0 < 𝑞 < 1, and 𝑧  is the upper pth quantile of 𝑁(0,1) for 0 < 𝑝 < 1. To implement the GPT estimator, the values of 𝛼ଵ, 𝛼ଶ, and 𝑞 must be chosen. 

For any value of 𝛼ଵ  and 𝛼ଶ , as well as a function 𝑞 , one can show that 𝜹ୋ ≡(𝛿ଵୋ, … , 𝛿ୋீ) has smaller WMSE and TMSE values than 𝒀, provided 𝝁 ≈ 𝟎 [20]. 
One may choose 𝑞 = 1/2 (50% shrinkage), as suggested by [20,41]. To facilitate the 

interpretability of the pretests, one may choose 𝛼ଵ = 0.05 (5% level) and 𝛼ଶ = 0.10 (10% 
level). The resultant estimator is 

𝛿ୋ = 𝑌𝐼 ൬ฬ𝑌𝜎ฬ > 1.96൰ + 𝑞𝑌𝐼 ൬1.645 < ฬ𝑌𝜎ฬ ≤ 1.96൰ ,      𝑖 = 1,2, … , 𝐺.    
The special case of 𝛼ଵ = 𝛼ଶ = 𝛼 = 0.05 leads to the usual pretest (PT) estimator 

In the above commands, the input includes the optional argument “id” that signifies
the leading authors and publication years of the 11 studies. We did so simply to make
an informative output. If the input does not include this argument, the output shows the
ordered sequence of 1, 2, . . . , 11 as shown in Section 3.2.

3.4. Estimators under Sparse Means

We now consider discrete shrinkage schemes by pre-testing H0 : µi = 0 vs. H1 : µi 6= 0
for i = 1, 2, . . . , G. The idea was proposed by Bancroft [36], who developed pretest estimators
(see also more recent works [20,37–43]). In the meta-analytic context, Taketomi et al. [20]
adopted the general pretest (GPT) estimator of Shih et al. [41], which is defined as follows:

δGPT
i = Yi I

(∣∣∣∣Yi
σi

∣∣∣∣ > zα1/2

)
+ qYi I

(
zα2/2 <

∣∣∣∣Yi
σi

∣∣∣∣ ≤ zα1/2

)
, i = 1, 2, . . . , G.

Here 0 ≤ α1 ≤ α2 ≤ 1, 0 < q < 1, and zp is the upper pth quantile of N(0, 1) for
0 < p < 1. To implement the GPT estimator, the values of α1, α2, and q must be chosen. For
any value of α1 and α2, as well as a function q, one can show that δGPT ≡

(
δGPT

1 , . . . , δGPT
G

)
has smaller WMSE and TMSE values than Y, provided µ ≈ 0 [20].

One may choose q = 1/2 (50% shrinkage), as suggested by [20,41]. To facilitate the
interpretability of the pretests, one may choose α1 = 0.05 (5% level) and α2 = 0.10 (10%
level). The resultant estimator is

δGPT
i = Yi I

(∣∣∣∣Yi
σi

∣∣∣∣ > 1.96
)
+ qYi I

(
1.645 <

∣∣∣∣Yi
σi

∣∣∣∣ ≤ 1.96
)

, i = 1, 2, . . . , G.

The special case of α1 = α2 = α = 0.05 leads to the usual pretest (PT) estimator

δPT
i = Yi I

(∣∣∣∣Yi
σi

∣∣∣∣ > 1.96
)

,
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In our R package, the function “gpt(.)” can compute δPT and δGPT. The significance
levels and the shrinkage parameter are flexibly chosen by the following arguments:

• alpha1: significance level for α1 (0 < alpha1 < 1);
• alpha2: significance level for α2 (0 < alpha2 < 1);
• q: degrees of shrinkage for q (0 < q < 1).

If users do not specify them, the default values α1 = 0.05, α2 = 0.10, and q = 0.5 will
be realized. The following is an example:
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4. Simulation: Validating the R Package 
This technical section is devoted to the numerical verification of the proposed pack-

age via Monte Carlo simulation experiments. Users of the package may skip this section. 
We conducted simulations to investigate the operating performance of the seven es-

timators implemented in the proposed R package (Section 3). Our simulation design 
added new scenarios to the original ones in [20]. Hence, the simulation not only added 
new knowledge on the performance of the seven estimators, but it also validated the pro-
posed R package. 

4.1. Simulation Design 
We considered the four scenarios for the true parameters 𝝁 = (𝜇ଵ, … , 𝜇ீ): 

Scenario (a): Ordered and non-sparse: 𝝁 = (−2, −2, −1, −1,0,0,1,1,2,2); 
Scenario (b): Ordered and sparse: 𝝁 = (0,0,0,0,0,0,0,0,2,4); 
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The output shows that δPT and δGPT lead to 0%, 50%, or 100% shrinkage of Y. The
estimates of δPT yield 0 for 12 studies, and the estimates of δGPT yield 0 for 10 studies.

4. Simulation: Validating the R Package

This technical section is devoted to the numerical verification of the proposed package
via Monte Carlo simulation experiments. Users of the package may skip this section.

We conducted simulations to investigate the operating performance of the seven
estimators implemented in the proposed R package (Section 3). Our simulation design
added new scenarios to the original ones in [20]. Hence, the simulation not only added new
knowledge on the performance of the seven estimators, but it also validated the proposed
R package.

4.1. Simulation Design

We considered the four scenarios for the true parameters µ = (µ1, . . . , µG):

Scenario (a): Ordered and non-sparse: µ = (−2,−2,−1,−1, 0, 0, 1, 1, 2, 2);

Scenario (b): Ordered and sparse: µ = (0, 0, 0, 0, 0, 0, 0, 0, 2, 4);

Scenario (c): Unordered and non-sparse: µ = (1,−1, 1,−1, 1,−1, 1,−1, 1,−1);

Scenario (d): Unordered and sparse: µ = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0);

Scenario (e): Ordered and non-sparse: µ = (2, 2, 1, 1, 0, 0,−1,−1,−2,−2);

Scenario (f): Ordered and sparse: µ = (0, 0, 0, 0, 0, 0, 0, 0,−2,−4).
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These scenarios were not considered by our previous simulation studies [20].
We generated normally distributed data Yi ∼ N

(
µi, σ2

i
)

where σ2
i ∼ χ2

d f=1/4 was

restricted (truncated) in σ2
i ∈ [0.009, 0.6], i = 1, 2, . . . , G, as previously considered [20,44].

Using the data Y ≡ (Y1, . . . , YG), we applied the proposed R package meta.shrinkage to
compute δJS, δJS+, δRML, δRJS, δRJS+, δPT, and δGPT for estimating µ. We examined how
these estimators improved upon the standard estimator Y in terms of the TMSE and WMSE.

Our simulations were based on 10,000 repetitions using Y(r), where 1 ≤ r ≤ 10, 000.
Let δ

(
Y(r)

)
=
(

δ1

(
Y(r)

)
, . . . , δG

(
Y(r)

))
be one of the seven estimators in the rth repetition.

To assess the TMSE, we computed it via the Monte Carlo average:

TMSE ≡ 1
10, 000

10,000

∑
r=1

[
G

∑
i=1

(
δi

(
Y(r)

)
− µi

)2
]

.

As the TMSE and WMSE gave the same conclusion, we reported on the former.
Appendix A provides the R code for the simulations, which can reproduce the results

of the following section.

4.2. Simulation Results

Figure 3 compares the estimators Y, δJS, δJS+, δRML, δRJS, δRJS+, δPT, and δGPT.
In Scenarios (a) and (e), the smallest TMSE values were achieved by δRML, δRJS,

and δRJS+, which appropriately accounted for the ordered means. Thus, these ordered
mean estimators provided some advantages over the standard estimator Y. Here, users
needed to specify the option “decreasing = FALSE” (Scenario (a)) or “decreasing = TRUE”
(Scenario (e)) to capture the true ordering of the means. On the other hand, δPT and δGPT

produced unreasonably large TMSE values, since they wrongly imposed the sparse mean
assumptions.

In Scenario (b), the smallest TMSE values were attained by δPT followed by δGPT,
as they took advantage of the sparse means. The TMSE values for δRML, δRJS, and δRJS+

were also small by accounting for the ordered means. Hence, these pretest and restricted
estimators produced significant advantages over the standard estimator Y.

In Scenario (c), δJS and δJS+ performed the best, but the advantage over Y was modest.
In this scenario, δRML, δRJS, and δRJS+ produced quite large TMSE values and performed
the worst, since they wrongly assumed the ordered means. Additionally, δPT and δGPT

produced large TMSE values since they wrongly assumed the sparse means. This was the
only scenario where the standard estimator Y was enough.

In Scenario (d), the smallest TMSE values were attained by δGPT, as it captured the
sparse means. The performance of δPT, δJS, and δJS+ was also good. On the other hand,
δRML, δRJS, and δRJS+ gave large TMSE values due to the unordered means.

In summary, our simulations demonstrated that the seven estimators implemented in
the proposed R package exhibited desired operating characteristics. If the true means were
ordered, the restricted estimators (δRML, δRJS, and δRJS+) showed definite advantages over
the standard estimator Y. In addition, the pretest estimators (δPT and δGPT) produced the
best performance under the sparse means. Finally, the JS estimators (δJS and δJS+) modestly
but uniformly improved upon Y across all the scenarios.

We therefore conclud that there are good reasons to apply the proposed R package to
estimate µ in order to improve the accuracy of estimation.
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5. Data Example

This section analyzes a dataset to illustrate the methods in the proposed package,
demonstrating their possible advantages over the standard meta-analysis. Appendix B
provides the R code, which can reproduce the following results.

We used the blood pressure dataset containing G = 10 studies, where each study
examined the effect of a treatment to reduce blood pressure. The dataset is available in
the R package mvmeta. Available online: https://CRAN.R-project.org/package=mvmeta
(accessed on 14 November 2021). Each study provided the treatment’s effect estimate on
the systolic blood pressure (SBP) and the treatment’s effect on the diastolic blood pressure
(DBP), as shown in Table 1. In the following analysis, we focus on the treatment’s effect
estimates for the SBP and regard those for the DBP as covariates.

Table 1. The 10 studies from the blood pressure data. Each study provided the treatment’s effect on
the systolic blood pressure (SBP) and the treatment’s effect on the diastolic blood pressure (DBP).

Treatment
Effect on SBP SE Treatment

Effect on DBP SE

Study 1 −6.66 0.72 −2.99 0.27
Study 2 −14.17 4.73 −7.87 1.44
Study 3 −12.88 10.31 −6.01 1.77
Study 4 −8.71 0.30 −5.11 0.10
Study 5 −8.70 0.14 −4.64 0.05
Study 6 −10.60 0.58 −5.56 0.18
Study 7 −11.36 0.30 −3.98 0.27
Study 8 −17.93 5.82 −6.54 1.31
Study 9 −6.55 0.41 −2.08 0.11

Study 10 −10.26 0.20 −3.49 0.04

We aimed to improve the individual treatment effects on the SBP by the methods in
the R package meta.shrinkage. For this purpose, we utilized the covariate information to
implement meta-analyses under ordered means (Sections 3.2 and 3.3).

To apply the proposed methods, we changed the order of the 10 studies by the
increasing order of the covariates (see the first column of Table 2). Under this order, we
defined Yi, where i = 1, . . . , 10 as the treatment effect estimates on the SBP (see Y in the
second column of Table 2). Table 2 shows a good concordance between Y and the covariates;
the smallest covariate (−7.87) yielded the smallest outcome (Y1 = −17.93), and the largest
covariate (−2.08) yielded the largest outcome (Y11 = −6.55). However, the values of Yi
were not perfectly ordered.

https://CRAN.R-project.org/package=mvmeta
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Table 2. The treatment effect estimates on the SBP based on the 10 studies from the blood pressure
data. The 10 studies are ordered by the covariates (treatment effect estimates on the DBP).

Covariate Y δJS δJS+ δRML δRJS δRJS+

Study 2 −7.87 −17.93 −17.91 −17.91 −16.05 −16.05 −16.05
Study 8 −6.54 −10.26 −10.25 −10.25 −16.05 −16.05 −16.05
Study 3 −6.01 −14.17 −14.16 −14.16 −12.88 −12.88 −12.88
Study 6 −5.56 −11.36 −11.35 −11.35 −10.6 −10.6 −10.6
Study 4 −5.11 −8.71 −8.70 −8.70 −9.76 −9.76 −9.76
Study 5 −4.64 −10.6 −10.59 −10.59 −9.76 −9.76 −9.76
Study 7 −3.98 −8.7 −8.69 −8.69 −9.76 −9.76 −9.76
Study 10 −3.49 −12.88 −12.87 −12.87 −9.76 −9.76 −9.76
Study 1 −2.99 −6.66 −6.65 −6.65 −6.66 −6.66 −6.66
Study 9 −2.08 −6.55 −6.54 −6.54 −6.55 −6.55 −6.55

We therefore considered the order-restricted estimators (δRML, δRJS, and δRJS+) by
imposing the assumption that the true treatment effects were ordered. Table 2 shows that
these restricted estimators satisfied δ1 ≤ . . . ≤ δ10 (see the fifth through the seventh columns
of Table 2). Since it was reasonable to impose a concordance between the treatment effects
on the SBP and DBP, these estimators may have been advantageous over the standard
estimates (Y). In this data example, the JS estimators (δJS and δJS+) were almost identical
to the standard estimates Y. Hence, there would be little advantage to shrinkage in the
JS estimators.

By the “rml(.)” function, we tested if the µi values were ordered by a sequence of co-
variates. Figure 4 shows a correlation-based test and the LOWESS plot. The test confirmed
that the means were ordered by an increasing sequence (x1 < . . . < x10). The P-value was
highly significant (p = 0.002). Therefore, we validated the assumption of ordered means.
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6. Conclusions and Future Extensions

This article introduced an R package meta.shrinkage (https://CRAN.R-project.org/
package=meta.shrinkage (accessed on 15 November 2021)), which we made freely available
on CRAN. It was first released on 19 November 2021 (version 0.1.0), following our original
methodological article published on 20 October 2021 [20]. We hope that the timely release of
our package facilitates the appropriate use of the proposed methods for interested readers.
As the precision and reliability of the developed statistical methods are important, we
conducted extensive simulation studies to validate the proposed R package (Section 4). We
also analyzed a data example to show the ability of the R package (Section 5).

To implement isotonic regression in our R package, we proposed a matrix-based
algorithm for the PAVA (Figure 1). This algorithm is easy to program in the R environment,

https://CRAN.R-project.org/package=meta.shrinkage
https://CRAN.R-project.org/package=meta.shrinkage
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where matrices are convenient to manipulate. However, if one tries to implement the
PAVA in other programing environments, the matrix-based algorithm may be inefficient,
especially for a meta-analysis with a very large number of studies. The number G > 500
makes the proposed algorithm slow to compute the output. However, real meta-analyses
rarely have more than 100 studies, so this issue may not arise at the practical level.

An extension of the present R packages to multiple responses is an important research
topic. An example includes a meta-analysis of verbal and math test scores [45], consisting
of two responses. A similar instance involves math and stat tests [44,46]. There is much
room for meta-analyzing bivariate and multivariate responses [47–56]. Multivariate shrink-
age estimators of multivariate restricted and unrestricted normal means, such as those
in [57–60], can be considered for this extension.

The proposed R package can only handle normally distributed data; it cannot handle
data that are non-normally distributed, asymmetrically distributed, or discrete-valued. To
analyze such data, one should consider extensions of the meta-analysis methods in [20]
toward asymmetric distributions for skewed or discrete response variables. Shrinkage and
pretest estimators exist, such as [61] for the exponential distribution, [62] for the gamma
distribution, and [63,64] for the Poisson distribution. Thus, meta-analytical applications of
shrinkage estimators to asymmetric or non-normal models are relevant research directions.

We left a comparison of the estimators in our package with the Bayesian random-
effects meta-analyses. For instance, the performance of the proposed estimators could be
compared with the Bayesian posterior mean estimators, which could be computed from the
bayesmeta package [15]. However, one needs to specify the prior mean and prior standard
deviation to perform the Bayesian meta-analyses. Therefore, it remains unclear how to
perform a fair comparison between the Bayesian and non-Bayesian estimators, as found
in [65,66]. A carefully designed comparative study will be helpful for guiding users to
apply two R packages: meta.shrinkage and bayesmeta.
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Appendix A. R Code for Simulations

#install.packages(“meta.shrinkage”)
library(meta.shrinkage)
R = 10,000
Sa = “Scenario (a): True means: (−2,−2,−1,−1,0,0,1,1,2,2); Ordered & Non-sparse”
Sb = “Scenario (b): True means: (0,0,0,0,0,0,0,0,5,10); Ordered & Sparse”
Sc = “Scenario (c): True means: (1,−1,1,−1,1,−1,1,−1,1,−1); Unordered & Non-sparse”

https://www.mdpi.com/article/10.3390/a15010026/s1
https://www.mdpi.com/article/10.3390/a15010026/s1
https://CRAN.R-project.org/package=meta.shrinkage
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Sd = “Scenario (d): True means: (0,0,0,1,0,0,0,1,0,0); Unordered & Sparse”
Se = “Scenario (e): True means: (2,2,1,1,0,0,−1,−1,−2,−2); Ordered & Non-sparse”
Sf = “Scenario (f): True means: (0,0,0,0,0,0,0,0,−2,−4); Ordered & Sparse”
Mu = c(−2,−2,−1,−1,0,0,1,1,2,2);nam = Sa
#Mu = c(0,0,0,0,0,0,0,0,5,10);nam = Sb
#Mu = c(1,−1,1,−1,1,−1,1,−1,1,−1);nam = Sc
#Mu = c(0,0,0,1,0,0,0,1,0,0);nam = Sd
#Mu = c(2,2,1,1,0,0,−1,−1,−2,−2);nam = Se
#Mu = c(0,0,0,0,0,0,0,0,−2,−4);nam = Sf
G = length(Mu)
Mu_y = Mu_js = Mu_jsp = matrix(NA,R,G)
Mu_rml = Mu_rjs = Mu_rjsp = matrix(NA,R,G)
Mu_pt = Mu_gpt = matrix(NA,R,G)
W = matrix(NA,R,G)
mu_y = mu_js = mu_jsp = rep(NA,R)
mu_rml = mu_rjs = mu_rjsp = rep(NA,R)
for(i in 1:R){
set.seed(i)
Chisq = rchisq(1000,df = 1)/4
s = sqrt(Chisq[(Chisq> = 0.009)&(Chisq< = 0.6)][1:G])
W[i,] = 1/sˆ2
y = rnorm(G,mean = Mu,sd = s)
Mu_y[i,] = y
Mu_js[i,] = js(y,s)$JS
Mu_jsp[i,] = js(y,s)$JS_plus
Mu_rml[i,] = rml(y)$RML
Mu_rjs[i,] = rjs(y,s)$RJS
Mu_rjsp[i,] = rjs(y,s)$RJS_plus
Mu_pt[i,] = gpt(y,s)$PT
Mu_gpt[i,] = gpt(y,s)$GPT
## for scenarios (e) and (f)
#Mu_rml[i,] = rev(rml(y,decreasing = TRUE)$RML)
#Mu_rjs[i,] = rev(rjs(y,s,decreasing = TRUE)$RJS)
#Mu_rjsp[i,] = rev(rjs(y,s,decreasing = TRUE)$RJS_plus)
}
Mu_mat = matrix(rep(Mu,R),nrow = R,ncol = G,byrow = TRUE)
TMSE_y = sum( colMeans((Mu_y-Mu_mat)ˆ2) )
TMSE_js = sum( colMeans((Mu_js-Mu_mat)ˆ2) )
TMSE_jsp = sum( colMeans((Mu_jsp-Mu_mat)ˆ2) )
TMSE_rml = sum( colMeans((Mu_rml-Mu_mat)ˆ2) )
TMSE_rjs = sum( colMeans((Mu_rjs-Mu_mat)ˆ2) )
TMSE_rjsp = sum( colMeans((Mu_rjsp-Mu_mat)ˆ2) )
TMSE_pt = sum( colMeans((Mu_pt-Mu_mat)ˆ2) )
TMSE_gpt = sum( colMeans((Mu_gpt-Mu_mat)ˆ2) )
TMSE = c(TMSE_y,TMSE_js,TMSE_jsp,TMSE_rml,
TMSE_rjs,TMSE_rjsp,TMSE_pt,TMSE_gpt)
barplot(TMSE,names.arg = c(“Y”,”JS”,”JS+”,”RML”,”RJS”,”RJS+”,”PT”,”GPT”),
col = c(“red”,”purple”,”blue”,”darkgreen”,”green”,
“lightgreen”,”orange”,”brown”),
main = nam,xlab = “Estimator”,ylab = “TMSE”)
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Appendix B. R Code for the Data Example

#install.packages(“mvmeta”)
library(mvmeta)
#install.packages(“meta.shrinkage”)
library(meta.shrinkage)
data(hyp)
dat<-hyp
#——————-
# JS estimator and JS_plus estimator
#——————-
JS<-js(dat$sbp,dat$sbp_se)
id<-c(2,8,3,6,4,5,7,10,1,9)
dat1<-data.frame(“Y” = dat$sbp,”JS” = JS[,1],”JS_plus” = JS[,2],”id” = id)
dat1
dat2<-dat1[order(dat1$id,decreasing = T),]
#——————-
# RML estimator
#——————-
RML<-rml(dat$sbp,x = dat$dbp,id = dat$study,test = TRUE)
#——————-
# RJS estimator and RJS+ estimator
#——————-
RJS<-rjs(dat$sbp,dat$sbp_se,x = dat$dbp,id = dat$study)
res<-data.frame(“Study” = RML$id,”x”=RML$x,”Y” = dat2$Y,”JS” = dat2$JS
,”JS_plus” = dat2$JS_plus,”RML” = RML$RML
,”RJS” = RJS$RJS,”RJS_plus” = RJS$RJS_plus)
res
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