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Abstract: Semantic code retrieval is the task of retrieving relevant codes based on natural language
queries. Although it is related to other information retrieval tasks, it needs to bridge the gaps
between the language used in the code (which is usually syntax-specific and logic-specific) and the
natural language which is more suitable for describing ambiguous concepts and ideas. Existing
approaches study code retrieval in a natural language for a specific programming language, however
it is unwieldy and often requires a large amount of corpus for each language when dealing with
multilingual scenarios.Using knowledge distillation of six existing monolingual Teacher Models
to train one Student Model – MPLCS (Multi-Programming Language Code Search), this paper
proposed a method to support multi-programing language code search tasks. MPLCS has the ability
to incorporate multiple languages into one model with low corpus requirements. MPLCS can study
the commonality between different programming languages and improve the recall accuracy for
small dataset code languages. As for Ruby used in this paper, MPLCS improved its MRR score by 20
to 25%. In addition, MPLCS can compensate the low recall accuracy of monolingual models when
perform language retrieval work on other programming languages. And in some cases, MPLCS’
recall accuracy can even outperform the recall accuracy of monolingual models when they perform
language retrieval work on themselves.

Keywords: multilingualities; code search; knowledge distillation

1. Introduction

The research on code retrieval can be divided into two broad categories according to
the methods used: Information Retrieval-Based Methods and Deep Learning Model-Based
Methods. Information Retrieval-Based Methods are more based on traditional search meth-
ods, the main idea is to improve work based on text similarity, and to perform code retrieval
through search techniques combined with code features. For example, Luan et al. [1] pro-
posed a structured code recommendation tool called Aroma, which implements a method
of searching code by using coding. They divide the retrieval process into two stages: stage
1, perform a small range lightweight search, and then stage 2, a further in-depth search
based on the previous results searched in stage 1. On top of this, Lv et al. [2] discovered
a way to better connect the characteristics of code by focusing on the API calls in coding.
Standard APIs have specific functions and corresponding documentation descriptions,
this enables them to turn code search tasks into simple similarity matches between natural
language descriptions and API documentation. However, these information retrieval-based
methods cannot uncover the deep connection between natural language and code language,
this leads to the lack of accuracy in methods. With the rapid development of NLP, some
scholars start using deep learning models to solve the problem of code retrieval to prove
its accuracy.

The main strategy of the Deep Learning-Based Approach is to use a neural network
approach to map code snippets and query statements in the same vector space. Husain
et al. [3] came up with a plain and typical example to propose a basic framework where
they simply consider the code as a text, encode it using several common methods for text
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embedding, and map the code and description to the same high-dimensional space for
learning. Not long after, Gu et al. [4] went further in this direction, by not only considering
the code text as features, but also function names and API (Application Programming
Interface) sequences. After that, many scholars discovered more code-specific features to
build new models. Haldar et al. [5] added both tokens and AST (Abstract Syntax Tree)
information on the one hand, and improved join embedding, on the other hand, they argue
that only calculating similarity in the last step (i.e., only the overall similarity is considered,
not the local similarity) would cause information loss, so they fused both CAT (An AST-
Based Model) and MP (A Multi-Perspective Model) methods and proposed the MP-CAT
Model. Sachdev et al. [6] address an unsupervised learning task by proposing Neural
Code Search (NCS), using features such as function names, function calls, enumerated
quantities, string literals, annotations, TF-IDF weights, and word vectors to construct
high-dimensional vectors for retrieval. Cambronero et al. [7] made improvements based
on the NCS algorithm and proposed an improved idea of UNIF by adding a solution to the
unsupervised learning algorithm NCS to improve model performance. With this model,
a small number of supervised samples, can be comparable to some supervised learning
algorithms. Meanwhile, some scholars are researching other issues related to code retrieval,
for example, Yin and Neubig[8] investigated the task of code generation and argued that
the current approach is to view it as a seq2seq generation task, but does not take into
account that the code language has a specific syntactic structure. From this, an AST tree
generation by natural language is proposed, and tools are used to convert the AST tree into
code. Analogous to large pre-training models such as ELMo, GPT, BERT, and XLNet, Feng
et al. [9] and Kanade et al. [10] proposed the pre-training models with codes studied.

When modern software engineers develop a software product, it often requires more
than just one programming language, thus developers are faced with the need to search for
multiple code languages during the development process. A recent survey of open-source
projects has shown that the use of multiple languages is rather universal, with a mean num-
ber of 5 languages used per project[11]. Thus, multilanguage software development (MLSD)
seems to be common, at least in the open-source world[12]. As mentioned above, Both the
information retrieval-based approaches and the deep learning-based approaches deal with
the mapping from a single natural language to a single programming language. Thus this
paper proposed the idea of mapping a single natural language to a multi-programming
language, which is new in this field. The goal that we want to achieve here is, when a query
of natural language is inputted, we were able to find multiple programming languages
(such as Java, PHP, Go, etc.) codes that have the functionality that matches the natural
language description. And this is done with the use of knowledge distillation.

Hinton et al. [13] proposed the concept of knowledge distillation, the core idea of
knowledge distillation is to first train a complex model (known as the Teacher Model) and
then use the output or intermediate state of this model to train a smaller model (known as
the Student Model). The main contribution of knowledge distillation is model compression,
which has been widely studied and utilized in many areas of deep learning, such as
natural language processing, speech recognition, and computer vision. This technique
is also used for natural language translation tasks. Many scholars have done a lot of
exploratory work on multilingual translation models [14–17], and NMT-based multilingual
translation models have been discovered. Xu et al. [18] proposed to transfer knowledge
from individual models to multilingual models using knowledge distillation, which is
commonly used for studying model compression and knowledge migration and mostly
fits quite well with the multilingual code search environment. A large and deep Teacher
Model (or an ensemble of multiple models) is usually trained first, and then a smaller
and shallower Student Model is trained to mimic the behavior of the Teacher Model. The
Student Model can approach or even outperform the accuracy of the complex Teacher
Model by knowledge distillation. This paper uses knowledge distillation techniques to
fuse six pre-trained monolingual models into one student model. By doing so, the size of
the model is reduced significantly. At the same time, the student model’s performance is
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almost the same with each teacher model on the test set, on cases like Ruby and JavaScript,
the student model even outperformed the teacher model. After redoing the experiments
on different code and query encoders, we confirm that this method can be used on a wide
range of encoders.

We summarize our contributions as follows:

• We propose a code search model that efficiently and accurately addresses multi-
programming language fusion. A single model can solve the problem of searching for
multiple programming languages.

• Compared to multiple models, our model has fewer parameters. Also, the data set
requirements are lower because the data sets are complementary between different
languages.

• The ability to uncover connections between different programming languages makes
the model highly extensible, and this provides some support for languages with
relatively small corpora.

Background
Joint Vector Representations, also known as Multimodal Embedding [19], are very

common in code retrieval tasks and most deep-learning-based methods use this. Joint
Vector Representations is a method to learn the connection between two heterogeneous
structures, which maps data of two different structures into the same high-dimensional
space [20], so that the corresponding data fall as close as possible to each other in the
high-dimensional space, while making the non-corresponding data as far away from each
other as possible. Such an approach also makes the query process more intuitive, and
when performing a search, it is only necessary to find some points in the high-dimensional
space that are closest to the target point, i.e., the nearest neighbor problem in the high-
dimensional space.

Figure 1. Conceptual diagram of joint embedding in a code search task.

This paper used joint embedding to learn the relevance between natural language
description and code. As shown in Figure 1, code segments and natural language repre-
sentations are mapped to the same high-dimensional space. The code for bubble sort and
“bubble sort” is mapped to relatively close locations, as is the case for “quick sort”.

Paper structure
The remainder of the paper is organized as follows. Section 2 presents our proposed

framework, this includes the teacher model network structure and the learning process
of distilling knowledge using models to train student model. Section 3 describes the
experimental setup and details. Section 4 presents an analysis of the experimental results.
Section 5 concludes the paper.
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2. Multi-Programming Language Code Search

Inspired by multilingual translation models, we propose a novel deep learning model,
MPLCS, to solve the task of multi-programming language code search. Each programming
language has its own syntactic structure and thus programming languages are heteroge-
neous from one another. For the heterogeneous problem, the method of joint embedding
mentioned above is used to map them into the same high-dimensional space, and the
semantic similarity of each heterogeneous data is measured by the similarity degree. For
the problem of multi-model fusion, the solution we adopt is to use knowledge distillation
to handle it.

2.1. Overview

There are two main parts, one for training the Teacher Model and one for training
the Student Model. We will be discussing the network structure of the Teacher model
in Section 2.2. As for the Student Model, it has the same structure of the Teacher Model
and can take corresponding Teacher Model as input, then fuse the properties of different
language models. The components are elaborated in Section 2.3.

2.2. Teacher Model

We follow Hamel et al’s study and use the same monolingual model structure, i.e.,
1dCNN, NBOW, and self-attention, these are commonly used methods based on token
sequences. In this paper, we will only introduce the model structure of self-attention
and the subsequent experiments will be based on this model, since it performed best
among the 3 methods. We embedded the code in the same way as embedding the natural
language—an encoding of their token sequences with an added attention vector. In general,
the model needs to be trained for the following parts as shown in Figure 2: code_vocab and
query_vocab of the code and the description of the embedding layers, the fully connected
layers of the corresponding code and description, and the attention vector.

Figure 2. Details in Teacher Models whose encoder is self-attentions.

Here, we define two embedding lexicons: code_vocab and query_vocab, each line
corresponds to a specific code token or objects of the description token:

code_vocab ∈ R|X|×d (1)
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query_vocab ∈ R|Q|×d (2)

X is the set of code token dictionaries, Q is the set of natural language description
dictionaries, and d is the dimension of the embedding, which we set to 128 in our ex-
periments. Finding the embedding of a code or query is a simple matter of finding the
corresponding line.

For a line of code C = ctoken1, ctoken2, , ctokenn and its corresponding natural lan-
guage description Q = qtoken1, qtoken2, · · ·, qtokenm,with the ctokeni(i = 1, · · ·, n) as code
token and qtokeni(i = 1, · · ·, m) as description token. After embedding (random initializa-
tion) we can obtain:

ci = embedding(ctokeni),

qi = embedding(qtokeni) ∈ Rd (3)

And after going through a full connected layer, we have:

c̃i = tanh(Wc · ci), q̃i = tanh(Wq · qi) (4)

In which Wc, Wq ∈ Rd×d, tanh is the hyperbolic tangent function, which is a common
monotonous nonlinear activation function, taking the value from (−1, 1).

Finally, we use the attention vector to aggregate these token vectors, it is essentially a
weighted average aggregation. The main process is to calculate the weight of each token in
the current block of code or natural language sentence, in terms of goals, we naturally hope
that the token that can represent the code or sentence will occupy a greater weight, and
this is where “attention” comes into play. In the beginning, the attention vector a ∈ Rd will
be randomly initialized and study the model simultaneously during the training process.
The weight of each token is calculated by dotting the vector of the token with the attention
vector and then normalizing it to ensure that the weights sum up to 1, the weights of each
corresponding code token vector c̃i are calculated as follow:

αi =
exp(c̃T

i · a)
∑n

j=1 exp(c̃T
j · a)

(5)

The purpose of using exp is to ensure that the weights are positive, as in the standard
softmax function, and we divide by the sum of all terms to ensure that the sum of the
weights is 1, the calculation of natural language description token vector follows a similar
pattern. Once αi(i = 1, · · · , n) is calculated, the final code vector can be obtained by sum-
ming the linear weights of the code token vectors {c̃1, c̃2, · · · , c̃n} . Code Vector represents
the entire code segment, and it’s expressed as follow:

vc =
n

∑
i=1

αi · c̃i (6)

Similarity Model
After obtaining the code vector wait and the description vector, we want the code and

description vectors to be co-embedding, so we measure the similarity between these two
vectors. We measure this by using the cosine similarity formula, which is defined as

cos(vc, vq) =
vT

c · vq

‖vc‖‖vq‖
(7)

The higher the similarity, the higher the correlation between the code vector and the
description vector. In summary, the MPLCS model takes a pair of 〈codes, descriptions〉 as
input, and calculates their cosine similarity to measure the strength of their correlation.
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Teacher Model Learning
Contrastive representation learning is often used for code retrieval tasks [4,5,21–23],

and our experiment will use the contrastive loss function as the loss function of the
model.We now describe how to train the MPLCS model in two stages, the first stage
is to train the six Teacher Models. Both codes and descriptions are embedded into a
unified vector space. The ultimate goal of joint embedding is that if a code fragment and a
description have similar semantics, their embedding vectors should be close to each other.
In other words, given an arbitrary code fragment C and an arbitrary description D, we
want it to predict high similarity (close to 1) if D is the correct description of C, otherwise,
it will only little similarity (close to 0).

Therefore, we need to use negative samples to construct our loss function. Essentially
we consider this problem: we construct each training instance as a triad 〈C, D+, D−〉:
for each code fragment C, there is a positive description D+ (the correct description of
C) and a negative description D− (the wrong description of C) chosen randomly from a
pool of all D+(negative samples are derived from positive samples). When trained on the
〈C, D+, D−〉 set, MPLCS predicts the cosine similarity of the 〈C, D+〉 and 〈C, D−〉 pairs
and minimizes the rank loss, that is, minimizing the following equation.

Lossteacher = max(0, 1− cos(c, d+) + cos(c, d−)) (8)

In this formula, d+ represents positive description, d− represents negative description.
In practice, we use the strategy of obtaining the cosine between two of the N code vectors
and the N corresponding description vectors. This gives us an N ∗ N matrix, with positive
sample values on the main diagonal and negative sample values everywhere else. We want
the positive sample value to be as large as possible and the negative sample value to be as
small as possible, so we subtract the value on each diagonal by 1, and the main goal is to
make all values as small as possible. The formula is described as follows:

submax(X, i) = max
j 6=i

1≤j≤n

X[i, j]

Loss(X) =
1
n

n

∑
i=1

((1− X[i, j]) + submax(X, i))
(9)

2.3. Student Model

After training the six Teacher Models, we begin to train the Student Model. Every
language input will obtain two sets of vectors during the encoding step, one set constructed
by the Student Model and the other one constructed by the Teacher Model for the corre-
sponding language, as shown in Figure 3. The composition of the loss function consists of
three parts: (1) STUDENT’s code vector and STUDENT’s description vector, (2) the code
vector of the TEACHER and the description vector of the STUDENT, (3) the code vector of
the STUDENT and the description vector of the TEACHER.

Lossstudent−sel f = max(0, 1− cos(cstudent, dstudent+) + cos(cstudent, dstudent−)) (10)

LossKD = ∑
teacheri∈Teacher

(
max(0, 1− cos(cstudent, dstudent+) + cos(cstudent, dstudent−))+

max(0, 1− cos(cstudent, dteacher+) + cos(cstudent, dteacher−))

)
(11)

Lossstudent−ALL = (1− λ)Lossstudent−sel f + λLossKD (12)

In the formula, Teacher is the set of Teacher Models, which is the set of six Teacher
Models in this paper. For each of the Teacher Models, two additional sets of loss functions
are computed, as shown in LossKD, we replace code vector to the loss function in Teacher
Model’s and replace description vector to Teacher Models’. The parameter λ is used to
adjust the contribution of the teacher model in the student model. We explore the effect of
this parameter on Teacher Models in our experiment. Even the two parts of LossKD can be



Algorithms 2022, 15, 25 7 of 15

scaled differently to serve as a focus for one part of the work, and this part of the work can
be further elaborated for future studies.

Figure 3. Schematic diagram of the overall model.

The training process is shown in Algorithm 1. L is the number of language varieties,
which is taken as 6 in this paper, l ∈ [L] denotes the language number, Dl denotes the
training set for the language with the number l, θM represents the parameter of the multi-
lingual Student Model, the corresponding θl

teacher represents a parameter of Teacher Model
for the language with the number l. Our algorithm takes the pre-trained Teacher Models
as input. It is important to note that the training set for the Teacher Model can either be
shared with the Student training set for that language or choose a separate training set.
Similarly, the structure of the student network model can be set to be the same or different
from that of the teacher network model. For convenience, the same data set and network
model structure are chosen in this paper. Notice that lines 7–10 of Algorithm 1 made a
loss function selection. This is based on the strategy that: if the Student Model is already
performing better than the Teacher Model for a particular language, the Teacher Model
will not be introduced, but this setting is not fixed, and the accuracy of this language
may be reduced later when training other languages, that is then the Teacher Model will
be reintroduced. The setting of whether or not to introduce a Teacher Model involves
parameter τ, as described in lines 14–22, where the accuracy of the Student Model is higher
than that of the Teacher Model, then the Teacher Model is not introduced.
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Algorithm 1 Knowledge distillation in multiple code languages

Input: training set {Dl}L
l=1, trained Teacher Models for L languages {θl

teacher}
L
l=1, learn-

ing rate η,total number of training steps τ ,distillation inspection step length τcheck,
distillation accuracy threshold τ

Output: The trained Student Model
1: Randomly initialized Student Model parameters θM, current step count set to T = 0,

cumulative gradient g = 0, For each Teacher Model, mark f l = True, l ∈ [L]
2: while T < T do
3: T = T + 1
4: g = 0
5: for l ∈ [L] do
6: Randomly select a batch of data (cl , dl) from the training set Dl

7: if f l == True then
8: Calculating gradient on loss function, g+ = ∂Lossstudent−ALL/∂θM
9: else

10: Calculating gradient on loss function, g+ = ∂Lossstudent−sel f /∂θM
11: end if
12: end for
13: Update model parameter : θM− = η ∗ g
14: if T%Tcheck == 0 then
15: for l ∈ [L] do
16: if Accuracy(θM) < Accuracy(θl

teacher) + τ then
17: f l = True
18: else
19: f l = False
20: end if
21: end for
22: end if
23: end while

3. Experiments
3.1. Data Preparation

The experimental data was selected from the publicly available dataset collected
by Hamel et al. [3]. They collected corpus from publicly available open-source GitHub
repositories, and to weed out a portion of low-quality project code, libraries.io was used to
identify all projects that were quoted by at least one other project, and were ranked by the
number of stars and forks indicated by “popularity” ranking. The statistic information of
the database is listed in Table 1. Data set is divided into training set, validation set, and test
set according to an 80:10:10 ratio.

However, the obtained data through the corpus cleaning is still unsatisfied. First of
all, function annotation is essentially different from inquired sentences, so the format of
language is not the same.

Table 1. Sample size.

Number of Functions

Java 542,991
Go 347,789

PHP 717,313
Python 503,502

JavaScript 157,988
Ruby 57,393
Total 2,326,976
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Code and annotations are often written by the same author at the same time and
therefore they appear to be the same vocabulary, unlike search queries which cover many
different terms. Secondly, despite we put enough effect on data cleaning, the extent to
which each annotation accurately describes its relevant code fragment is still uncertain. For
example, some annotations are obsolete in terms of the code they describe or the object of
the comment is a localized part that the author wants to focus on rather than the whole
function. Finally, we are aware of some annotations are written in other languages such
as Japanese and Russian, and that our evaluation dataset focuses on English queries. In
order to address this issue, some scholars have chosen to add some other conditional
features to strengthen the characteristics of samples. When collecting and sorting corpus,
they tend to select previously available code and corresponding descriptive annotations,
and in addition, they also collect relevant query information, such as gathering asked
questions from Stack Overflow and attracting the code and corresponding annotations
from the answers, this method can help to propose some models that make good use of
this new information, whereas this type of data is not mainstream (most codes do not have
query information) For example, a company’s internal code does not have relevant query
questions, so this paper is still experimenting with the original dataset.

3.2. Vocabulary

For a fixed-size dictionary, the traditional tokenization based technique of simply
segmenting the text with spaces and symbols has many drawbacks, such as the inability to
deal well with unknown or rare words (the OOV out-of-vocabulary problem); the nature
of the language’s own lexical construction, and the difficulty of learning the root word
associations with the traditional method. This leads to the lack of generalization ability
with the traditional approach. Byte-Pair-Encoding (BPE) is a method for solving such
issues. unknown or rare words can be classified as unregistered words. Unregistered is
known as words that do not appear in the training corpus, but appear in the test corpus.
When we work with NLP tasks, we usually generate a vocabulary list (dictionary) based
on the corpus, for the words in the corpus that have a frequency greater than a certain
threshold, they will be put into the dictionary, and encode all words below that threshold
as "#UNK". The advantage of this approach is its simplicity, but the problem is that it’s
difficult for our model to handle unregistered words if they appear in the test corpus.
Usually, our dictionaries are word-level, meaning that they are based on words or phrases,
but this inevitably leads to the problem of unregistered words, because it is impossible to
design a very large dictionary that covers all words. In addition, another type of lexicon
is character-level, which is to design a lexicon with a single letter or Chinese character as
the basic word. This approach can theoretically solve the problem of unregistered words
because all words are composed of letters, but the disadvantage of this is that the model
granularity is too fine and lacks semantic information. Rico et al. [24] proposed a sub-word
based approach to generate lexicon, which combines the advantages of word-level and
character-level by learning the substrings of characters with high frequency in all words
from the corpus and then merging these substrings of characters with high frequency into a
lexicon, this dictionary contains both word-level substrings and character-level substrings.
We used the BPE technique to generate both query and code vocabulary.

3.3. Evaluation

Mean Reciprocal Rank (MRR)
MRR is commonly used in the recommended system as an evaluation metric. It

evaluates the performance of the retrieval system by using the ranking of the correct
retrieval results in retrieval results. The formula is as follows.

MRR =
1
|Q|

|Q|

∑
q=1

1
ranki

(13)
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SuccessRate@k
SuccessRate@k is a common metric to evaluate whether an approach can retrieve the

correct answer in the top k returning results. It is widely used by many studies on the code
search task. The metric is calculated as follows:

SuccessRate@k =
1
|Q|

|Q|

∑
q=1

δ(Rankq 6 k) (14)

where Q denotes the set of queries, Rankq denotes the highest rank of the hit snippets in
the returned snippet list for the query; δ() denotes an indicator function that returns 1 if
the Rank of the qth query (Rankq) is smaller than k otherwise returns 0. SuccessRate@k is
important because a better code search engine should allow developers to find the desired
snippet by inspecting fewer results.

3.4. Experiment Setup
3.4.1. Data Pre-Processing

First, we tokenize the code and description of the training set for all six languages and
use the BPE method to construct a code dictionary and a description dictionary, the size
of both dictionaries is set to 30,000. Then, codes and descriptions in the dataset are then
transformed into index sequences, the code length is set to 200, the description length is set
to 30, and a pad operation is used if the length is insufficient.

3.4.2. Teacher Model Training

We shuffle the training set, the batch size is set to 512, the epoch limit is set to 500, the
optimization algorithm is Adam, and the learning rate is 0.1. Early Stop mechanism is used
during the training process, i.e., setting a tolerance value of patience = 5, when a model
trained on one epoch performed better on the validation set than a model trained on the
next 5 epochs, stop training and save the model corresponding to this epoch. After training
for each language, six teacher models are obtained. In addition, in order to establish that
the method of knowledge distillation is indeed effective, We also set up a dataset that fused
six languages together to train a model, which is shown by the ALL rows in Tables 2 and 3.

3.4.3. Student Model Training

The network structure of the student model is consistent with that of the teacher model.
The results of the teacher models’ encoder are used to guide the student model during the
training process. The details are described in Algorithm 1 in the previous section.

3.4.4. Eevaluation Setting

The evaluation method for the teacher model and the student model was described in
the previous section. The batch size for both MRR and SuccessRate@k is set to 1000, that is
|Q| = 1000, k = 1, 5, 10 for SuccessRate@k.

3.4.5. Lambda Parameter Exploration

In order to find out the magnitude of impact the teacher model has on the student
model, the parameters in Equation (12) were set to different values, to explore the effect
of different weightings of the teacher model on the student model. As the results under
different encoders show a similar pattern, We explore the problem of λ only for the teacher
model and student model that both code and query encoder are self-attention.

3.4.6. Experiment Equipment

The equipment uses 3 RTX 1080Ti 11GB, and the training time per epoch is around
200–400 s. The number of epochs for a teacher model or student model is around 20–40.
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Table 2. MRR for each monolingual model and MPLCS model on different language test sets.

CODE
ENCODE

QUERY
ENCODE Model Go Java Javascript Php Python Ruby

SELF-ATT SELF-ATT

GO 0.7756 0.5400 0.4591 0.4552 0.5649 0.4760
Java 0.6485 0.6632 0.4806 0.5390 0.6047 0.5157

Javascript 0.5688 0.5187 0.5304 0.4494 0.5719 0.4816
Php 0.6432 0.6005 0.5068 0.6424 0.6915 0.5572

Python 0.6397 0.5691 0.4968 0.5602 0.7613 0.5791
Ruby 0.4849 0.4319 0.3494 0.3673 0.5167 0.4773
ALL 0.7356 0.6350 0.5240 0.6191 0.7177 0.5717

MPLCS 0.7472 0.6404 0.5492 0.6079 0.7289 0.5977

CNN CNN

GO 0.7780 0.5593 0.4767 0.4872 0.6002 0.4943
Java 0.6691 0.6776 0.5106 0.5644 0.6446 0.5381

Javascript 0.6038 0.5510 0.5546 0.4822 0.6148 0.5122
Php 0.6718 0.6181 0.5257 0.6539 0.7152 0.5707

Python 0.6783 0.5994 0.5140 0.5658 0.7748 0.5918
Ruby 0.5628 0.4738 0.3937 0.4208 0.5802 0.5239
ALL 0.7405 0.6458 0.5363 0.6268 0.7301 0.5805

MPLCS 0.7451 0.6531 0.5656 0.6217 0.7457 0.6111

NBOW NBOW

GO 0.6777 0.5181 0.4256 0.4081 0.5280 0.4420
Java 0.5408 0.5981 0.4354 0.4456 0.5414 0.4590

Javascript 0.5312 0.4844 0.4799 0.4118 0.5031 0.4087
Php 0.5645 0.5359 0.4442 0.5569 0.5720 0.4727

Python 0.5746 0.5212 0.4334 0.4499 0.6560 0.4987
Ruby 0.4645 0.4248 0.3465 0.3465 0.4977 0.4539
ALL 0.6466 0.5660 0.4602 0.5251 0.6117 0.4911

MPLCS 0.6710 0.5882 0.5024 0.5283 0.6389 0.5369

SELF-ATT NBOW

GO 0.7599 0.5315 0.4594 0.4379 0.5549 0.4647
Java 0.6392 0.6571 0.4849 0.5423 0.6021 0.5110

Javascript 0.5754 0.5136 0.5354 0.4740 0.5600 0.4687
Php 0.6391 0.5899 0.4956 0.6424 0.6678 0.5436

Python 0.6340 0.5646 0.4944 0.5473 0.7563 0.5646
Ruby 0.4840 0.4202 0.3476 0.3446 0.5072 0.4704
ALL 0.7266 0.6291 0.5271 0.6175 0.7127 0.5661

MPLCS 0.7403 0.6429 0.5604 0.6148 0.7356 0.6022

Table 3. SuccessRate@k for each monolingual model and MPLCS model on different language
test sets.

SuccessRate@k CODE
ENCODE

QUERY
ENCODE Model Go Java Javascript Php Python Ruby

SuccessRate@1

SELF-ATT SELF-ATT

Go 0.7233 0.4535 0.3750 0.3615 0.4645 0.3740
Java 0.5629 0.5859 0.3980 0.4496 0.5064 0.4150

Javascript 0.4828 0.4329 0.4400 0.3614 0.4715 0.3755
Php 0.5630 0.5208 0.4260 0.5645 0.6017 0.4555

Python 0.5594 0.4851 0.4158 0.4758 0.6781 0.4785
Ruby 0.3886 0.3428 0.2648 0.2787 0.4156 0.3710
ALL 0.6709 0.5542 0.4362 0.5362 0.6255 0.4700

MPLCS 0.6800 0.5643 0.4670 0.5295 0.6434 0.5035

CNN CNN

Go 0.7238 0.4730 0.3891 0.3889 0.4965 0.3830
Java 0.5862 0.5998 0.4229 0.4757 0.5453 0.4365

Javascript 0.5154 0.4616 0.4627 0.3925 0.5120 0.4045
Php 0.5933 0.5389 0.4434 0.5743 0.6240 0.4650

Python 0.6006 0.5144 0.4301 0.4782 0.6915 0.4890
Ruby 0.4671 0.3840 0.3032 0.3293 0.4794 0.4210
ALL 0.6758 0.5651 0.4461 0.5431 0.6376 0.4790

MPLCS 0.6801 0.5685 0.4723 0.5331 0.6510 0.5075
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Table 3. Cont.

SuccessRate@k CODE
ENCODE

QUERY
ENCODE Model Go Java Javascript Php Python Ruby

NBOW NBOW

Go 0.5934 0.4268 0.3320 0.3156 0.4254 0.3385
Java 0.4399 0.5072 0.3412 0.3480 0.4392 0.3520

Javascript 0.4359 0.3929 0.3825 0.3177 0.4018 0.3055
Php 0.4694 0.4453 0.3528 0.4630 0.4686 0.3680

Python 0.4796 0.4297 0.3397 0.3537 0.5537 0.3945
Ruby 0.3673 0.3347 0.2592 0.2577 0.3955 0.3465
ALL 0.5586 0.4728 0.3627 0.4286 0.5067 0.3825

MPLCS 0.5849 0.4935 0.3973 0.4287 0.5312 0.4260

SELF-ATT NBOW

Go 0.7021 0.4425 0.3718 0.3429 0.4530 0.3620
Java 0.5532 0.5791 0.3992 0.4543 0.5011 0.4015

Javascript 0.4866 0.4262 0.4445 0.3853 0.4566 0.3595
Php 0.5588 0.5095 0.4128 0.5645 0.5745 0.4430

Python 0.5529 0.4792 0.4103 0.4589 0.6713 0.4630
Ruby 0.3879 0.3312 0.2630 0.2560 0.4072 0.3635
ALL 0.6582 0.5473 0.4378 0.5331 0.6201 0.4625

MPLCS 0.6735 0.5600 0.4703 0.5271 0.6415 0.4945

SuccessRate@5

SELF-ATT SELF-ATT

Go 0.8302 0.6418 0.5535 0.5626 0.6850 0.5980
Java 0.7491 0.7567 0.5762 0.6450 0.7215 0.6335

Javascript 0.6710 0.6180 0.6370 0.5499 0.6898 0.6075
Php 0.7388 0.6947 0.6015 0.7356 0.8002 0.6770

Python 0.7373 0.6684 0.5870 0.6612 0.8639 0.7000
Ruby 0.5925 0.5303 0.4407 0.4661 0.6343 0.6070
ALL 0.8066 0.7327 0.6245 0.7179 0.8319 0.6855

MPLCS 0.8171 0.7441 0.6617 0.7214 0.8524 0.7290

CNN CNN

Go 0.8354 0.6617 0.5778 0.6041 0.7253 0.6290
Java 0.7685 0.7715 0.6113 0.6696 0.7648 0.6600

Javascript 0.7083 0.6562 0.6643 0.5854 0.7383 0.6380
Php 0.7634 0.7115 0.6189 0.7493 0.8279 0.6925

Python 0.7701 0.7015 0.6123 0.6709 0.8776 0.7175
Ruby 0.6729 0.5771 0.4991 0.5229 0.6996 0.6490
ALL 0.8119 0.7431 0.6411 0.7284 0.8455 0.7030

MPLCS 0.8179 0.7558 0.6778 0.7306 0.8656 0.7450

NBOW NBOW

Go 0.7729 0.6247 0.5358 0.5136 0.6476 0.5650
Java 0.6561 0.7063 0.5423 0.5581 0.6604 0.5835

Javascript 0.6399 0.5898 0.5920 0.5190 0.6190 0.5195
Php 0.6744 0.6413 0.5502 0.6677 0.6954 0.5930

Python 0.6833 0.6293 0.5350 0.5632 0.7815 0.6220
Ruby 0.5723 0.5263 0.4403 0.4442 0.6150 0.5865
ALL 0.7492 0.6773 0.5770 0.6401 0.7380 0.6200

MPLCS 0.7713 0.7048 0.6287 0.6475 0.7731 0.6770

SELF-ATT NBOW

Go 0.8213 0.6353 0.5588 0.5489 0.6736 0.5850
Java 0.7391 0.7491 0.5810 0.6450 0.7203 0.6365

Javascript 0.6774 0.6150 0.6402 0.5764 0.6821 0.5915
Php 0.7329 0.6840 0.5893 0.7356 0.7801 0.6625

Python 0.7282 0.6636 0.5912 0.6523 0.8620 0.6865
Ruby 0.5912 0.5210 0.4362 0.4408 0.6221 0.5995
ALL 0.8038 0.7269 0.6285 0.7186 0.8290 0.6905

MPLCS 0.8163 0.7438 0.6667 0.7209 0.8537 0.7325
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Table 3. Cont.

SuccessRate@k CODE
ENCODE

QUERY
ENCODE Model Go Java Javascript Php Python Ruby

SuccessRate@10

SELF-ATT SELF-ATT

Go 0.8581 0.6970 0.6100 0.6301 0.7476 0.664
Java 0.7936 0.7998 0.6325 0.6995 0.7826 0.6945

Javascript 0.7229 0.6749 0.6967 0.6129 0.7563 0.6755
Php 0.7831 0.7405 0.6550 0.7759 0.8486 0.7355

Python 0.7809 0.7215 0.6475 0.7154 0.9030 0.751
Ruby 0.6611 0.5995 0.5125 0.5355 0.7058 0.6785
ALL 0.8399 0.7777 0.6832 0.7636 0.8755 0.7455

MPLCS 0.8494 0.7910 0.7287 0.7703 0.8969 0.7930

CNN CNN

Go 0.8622 0.7146 0.6318 0.6672 0.7891 0.6945
Java 0.8104 0.8131 0.6694 0.7236 0.8215 0.7260

Javascript 0.7626 0.7114 0.7203 0.6492 0.7987 0.7020
Php 0.8054 0.7581 0.6771 0.7890 0.8722 0.7620

Python 0.8101 0.7507 0.6708 0.7234 0.9155 0.7710
Ruby 0.7373 0.6406 0.5624 0.5895 0.7678 0.7240
ALL 0.8447 0.7898 0.7008 0.7741 0.8906 0.7640

MPLCS 0.8523 0.8067 0.7410 0.7803 0.9117 0.8040

NBOW NBOW

Go 0.8208 0.6841 0.6033 0.5832 0.7196 0.6280
Java 0.7253 0.7624 0.6077 0.6280 0.7320 0.6595

Javascript 0.7025 0.6546 0.6593 0.5884 0.6902 0.5965
Php 0.7349 0.7003 0.6165 0.7291 0.7622 0.6660

Python 0.7449 0.6900 0.6068 0.6321 0.8422 0.6920
Ruby 0.6448 0.5913 0.5105 0.5153 0.6894 0.6565
ALL 0.8002 0.7361 0.6453 0.7034 0.8030 0.7045

MPLCS 0.8217 0.7626 0.6975 0.7156 0.8397 0.7455

SELF-ATT NBOW

Go 0.8508 0.6919 0.6198 0.6176 0.7395 0.6670
Java 0.7896 0.7934 0.6372 0.7000 0.7831 0.7010

Javascript 0.7328 0.6732 0.7017 0.6421 0.7465 0.6570
Php 0.7789 0.7322 0.6457 0.7755 0.8319 0.7205

Python 0.7779 0.7183 0.6488 0.7069 0.8994 0.7480
Ruby 0.6594 0.5858 0.5063 0.5126 0.6946 0.6775
ALL 0.8367 0.7745 0.6892 0.7637 0.8750 0.7465

MPLCS 0.8482 0.7918 0.7312 0.7715 0.9011 0.7865

4. Experiment Results

We have prepared several different sets of code and query encoding methods and
combined them into different models, including the common 1dCNN, NBOW, and self-
attention. We have also prepared a test set for each language and tested it on each monolin-
gual model and MPLCS respectively, the MRR results and SuccessRate@k results are shown
in Tables 2 and 3 respectively. The results indicate that the monolingual model’s prediction
performed better only for its own language, however, it did not perform well for other
languages (Ruby is because the training set is too small). Such a result holds in all models.
Otherwise, we can observe the similarity between programming languages through this
table, for example between Python and PHP. Notice that the ALL model trained by fusing
the six data, has consistent test results across various languages. Although the accuracy
rate is not as high as monolingual to itself, it is more accurate than monolingual to other
languages. Our model outperforms ALL on almost every language. It can be confirmed
that the student model does indeed study the knowledge of the teacher model through
knowledge distillation techniques. Notice that MPLCS is superior to the teacher model
on the Ruby and JavaScript test sets. This is due to the fact that the training sets for both
languages are relatively small, and the multilingual fusion model can compensate for the
small training set to some extent.

The effect of λ on the student model can be seen in Table 4. We can see that as λ
increases from 0 and the student model receives more guidance from the teacher model,
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which leads to the gradual increase in MMR across all models. When λ = 0.8, The average
MRR for the six languages reached a maximum, relatively close to the MMR when λ = 0.9
and λ = 1.0. The results indicate that as more teacher models are instructed, the more
knowledge student models are learned.

Table 4. The effect of λ on the student model.

Lambda Go Java Javascript Php Python Ruby Avg

0.0 0.7304 0.6365 0.5520 0.6041 0.7208 0.5925 0.6535
0.1 0.7386 0.6415 0.5567 0.6086 0.7274 0.5957 0.6591
0.2 0.7385 0.6444 0.5594 0.6084 0.7320 0.5980 0.6611
0.3 0.7345 0.6443 0.5602 0.6130 0.7362 0.6005 0.6628
0.4 0.7393 0.6460 0.5617 0.6138 0.7354 0.6033 0.6642
0.5 0.7394 0.6469 0.5602 0.6184 0.7400 0.6089 0.6668
0.6 0.7386 0.6471 0.5579 0.6165 0.7384 0.6024 0.6655
0.7 0.7470 0.6469 0.5563 0.6193 0.7364 0.6013 0.6669
0.8 0.7400 0.6473 0.5621 0.6191 0.7391 0.6059 0.6670
0.9 0.7421 0.6445 0.5533 0.6156 0.7357 0.6046 0.6642
1.0 0.7453 0.6456 0.5561 0.6155 0.7356 0.6042 0.6651

5. Conclusions

In this paper we present a new idea for semantic code retrieval - multi-code language
code retrieval. By introducing the knowledge distillation technique, we established a
Multi-Programming Language Code Search (MPLCS) model. The model can fuse several
monolingual teacher models into a single student model, it supports multi-language code
retrieval and also compensates for the deficiencies for languages where the training set
is too small. In addition, MPLCS has no restrictions on the encoding method, it can be
applied using a variety of different encoding methods. This paper only applied a general
knowledge distillation technique and used only the results encoded from the teacher’s
model, thus the model is not significant in terms of accuracy improvement. However, this
paper could have an intriguing effect on multi-code language code retrieval tasks.

Open Questions

• In this paper, only the simplest features of the code are obtained, which treats it as
a new natural language, other features such as API sequences, information from
AST trees were not used in this paper, further research on these features could better
improve the accuracy.

• As mentioned before, a high-quality training set can also greatly improve the practical
meaning of the conclusions.

• Translation between different programming languages is also a very interesting re-
search direction.

• Multi-natural language to multi-programming language is also a valuable research
direction, but it will require a more comprehensive dataset as support.
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