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Abstract: High-speed Permanent Magnet Synchronous Motor (PMSM) systems have been widely
used in industry and other fields for their advantages of having a simple structure, low processing
cost and high efficiency. At present, the control precision of PMSM is required to be higher and
higher, but it faces two major challenges. The first is that the PMSM system possesses (possibly fast)
time-varying uncertainty. The second is that there exist nonlinear portions in the PMSM system, such
as nonlinear elasticity, etc. To resolve these challenges, a novel performance measure β̂ is introduced
as a dynamic depiction of the constraint-following error, and a new robust control design is proposed
based on β̂. While this control renders guaranteed performance regardless of uncertainty, an optimal
design of a control parameter is further pursued. This inquiry is summed up as a semi-infinite
constrained optimization problem. After the induction of the necessary condition, the candidate
solutions can be identified. These are further screened by a sufficient condition, which results in the
actual solution. To verify the effectiveness of the control design, the compressor powered by a super
high-speed PMSM system is simulated, and its performance is discussed.

Keywords: compressor/PMSM system; robust control; optimization; constraints; shock absorbing

1. Introduction

The modern AC motor actuators in the industrial field face the challenging require-
ments of high efficiency, high precision, and high performance with advances in digital
electronics, industrial machine drives, and control theory. In AC motor actuators, the
Permanent Magnet Synchronous Motor (PMSM) system is increasingly popular for its
simple structure, low processing cost, high efficiency, and robustness. The PMSM has been
widely used in high precision fields, such as robotics, aerospace, large telescopes and so
on. However, PMSM is a typical nonlinear and multi-variable coupling system. Moreover,
(possibly fast) time-varying uncertainties always affect its control performance and cause
ripples in the actual operation [1]. Therefore, designing a high precision PMSM system
control is difficult but rewarding.

The motion equation must be obtained first to achieve the control of the PMSM
system. Pioneers proposed many forms of constrained motion equations which are based
on D’Alembert’s principle [2]. This principle is appropriate for many cases, but not in cases
where the constraints are nonholonomic or non-ideal. To overcome the limitation, a simple
and explicit decoupled motion equation, the Udwadia–Kalaba equation, is proposed.
The theory is known as the Udwadia–Kalaba theory [3,4]. In contrast to the Lagrange
method, the Udwadia–Kalaba theory does not need the hard-to-get multiplier. In addition,
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it provides an efficient way to handle any type of constraints, whether holonomic or
nonholonomic constraints, ideal or non-ideal.

The analysis of PMSM system constraints is another central problem. Constraint
following problems fall into two types: passive constraint problems and servo constraint
problems [5]. The second type is the key issue for precise control design [6,7]. The main
focus of servo constraints, which are model-based, is to figure out what the engineer should
do, or to figure out the force/torque of the servo mechanism (such as the motor), in order
to comply with the constraints. In this paper, the servo robust control is designed based on
servo constraints.

At present, the traditional PID control, hysteresis control, and predictive control are
commonly used for PMSM [8,9]. PID control has the characteristics of stability, reliability,
and simple parameter setting. Nevertheless, it is difficult to meet the high precision appli-
cation. Because it is easy to cause system overshoot and oscillation when the gain of PID
control increases, therefore, scholars adopted many advanced approaches to control the
PMSM system, such as sliding mode control [10], interval type-2 fuzzy dynamic high type
control [11], predefined-time control [12] and fuzzy-set-based control [13], while the conver-
gance speed is not fast enough when the system state is far from the equilibrium point and
the calculation is complicated. Furthermore, the optimal design of the control parameter
is not pursued. Robust control is another common tool to deal with uncertainty [14–17],
which has been used in robot manipulators, quadrotors, aerospace and many other mechan-
ical systems. A new Udwadia–Kalaba-based servo robust control approach is presented in
this paper to meet the requirement of precise control.

Different from the previous robust control method, in which the control performance
is directly measured by constraint error β [18,19], a generalized performance measure β̂ in
the new proposed robust control is introduced as a dynamic depiction of the constraint-
following error. The definition of β in the previous study is just a special case of β̂. Then,
a more practical optimal design of control parameters is also considered [20,21] based on
the general control performance.

In summary, this paper has made contributions to four aspects to realize the high
precision control of the PMSM. First, a novel system performance measure (β̂) is taken as
the control object, which is the “dynamic” generalization of the previous “static” β measure.
Second, a new robust control method for constraint following is proposed, which can
guarantee the uniform boundedness and uniform ultimate boundedness of the uncertain
compressor/PMSM performance. Third, the relationship between β̂ and β is explored.
Fourth, optimization of the control design parameter is pursued. This task is summed up
as a constrained optimization problem of the compressor/PMSM and solved by invoking
an necessary condition followed by a sufficient condition.

2. Servo Robust Control

In this section, a new servo robust control is proposed for the precision control of the
compressor powered by a super high-speed PMSM system. First, the dynamic model of the
uncertain compressor/PMSM system is introduced. Second, the proposed robust control is
proved to guarantee the uniform boundedness and uniform ultimate boundedness of the
uncertain system.

2.1. Dynamic Model of the Compressor/PMSM System

A compressor powered by a super high-speed PMSM is considered, which is shown in
Figure 1. The system can be simplified as a two-mass system, where the first mass represents
the super high-speed PMSM, the second mass represents the compressor, and the shaft is
considered to be mass free, see Figure 2. Parameters of the system are given in Table 1.
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Figure 1. Compressor powered by a super high-speed PMSM.

Table 1. Parameters of two-mass system.

Parameter Description Units

Jm moment of inertia of the motor kg ·m2

Jl moment of inertia of the load kg ·m2

cm friction of viscous motor N ·m/(rad/s)
cl friction of viscous load N ·m/(rad/s)
cs inner damping coefficient of the shaft N ·m/(rad/s)
ks elasticity coefficient of the shaft N ·m/rad
τ1 control input N ·m
τ2 load torque disturbance N ·m

Figure 2. Two-mass system.

Some parameters of this model are uncertain in the real situation. Based on [22],
the uncertain dynamic model of the two-mass system without deadzone is:

M(x(t), ξ(t), t)ẍ(t) + C(x(t), ẋ(t), ξ(t), t)ẋ(t) + N(x(t), ξ(t), t) = τ(t). (1)

Here, x = [x1, x2]
T is the generalized coordinate vector, ẋ ∈ R2 is velocity, ẍ ∈ R2 is

acceleration, ξ ∈ Ξ ⊂ Rp, where ξ ∈ Rp is the time-varying uncertain parameter, Ξ is the
unknown but compact possible bound of ξ. In addition, M(x(t), ξ(t), t) is the inertia mass
matrix, C(x(t), ẋ(t), ξ(t), t)ẋ is the Coriolis force, N(x(t), ξ(t), t) is gravitational force and
other external disturbance forces. τ(t) = [τ1(t), −τ2(t)]T is the control torques. Functions
M, C, N are all assumed to be continuous and detailed expressions are

M =

[
Jm 0
0 Jl

]
, (2)

Cẋ =

[
(cm + cs)ẋ1 − cs ẋ2
−cs ẋ1 + (cl + cs)ẋ2

]
, (3)

N =

[
ks(x1 − x2)
ks(x2 − x1)

]
. (4)



Actuators 2022, 11, 42 4 of 16

Remark 1. The coordinate x can be chosen according to the specific situation, not necessarily a
generalized coordinate. The dimension of ξ ∈ Ξ ⊂ Rp is determined by the number of uncertain
terms in the two-mass system.

2.2. Problem Formulation

Constraints can be classified as holonomic constraints and nonholonomic constraints.
Bsed on [23], both holonomic constraints and nonholonomic constraints can be abbrevi-
ated to

A(x(t), t)ẍ(t) = b(x(t), ẋ(t), t), (5)

where A(x(t), t) is m× 2 matrix, b(x(t), ẋ(t), t) = [b1 b2 b3 · · · bm]T . The rank of A(x, t) is
not restricted and m is the number of constraints.

Remark 2. Mechanical systems may be subjected to both nonholonomic constraints and holonomic
constraints. These constraint equations do not have to depend on each other.

Assumption 1. The mass matrix M(x(t), ξ(t), t) is always greater than 0 for each (x(t), t) ∈ R2 × R.

Remark 3. Assumption 1 is vital. In the past, this was generally accepted as fact. However,
the counter situation occurs when the coordinate x is not selected as the generalized coordinate [24].

Definition 1. For a pair of given A and b, if there is at least one solution ẍ, then (5) is consistent.

Assumption 2. The rank of A(x, t) is greater than 1. Furthermore, all constraints are consistent.

Problem. For the uncertain two-mass system (1), a control τ is designed so that the
system finally meets the specified performance (5) under the action of control.

2.3. Servo Robust Control Design

Please note that functions M, C, and N all uncertain. They can be composed as:

M(·) = M̄(·) + ∆M(·), (6)

C(·) = C̄(·) + ∆C(·), (7)

N(·) = N̄(·) + ∆N(·), (8)

where M̄(·), C̄(·) and N̄(·) are “nominal” portions, and ∆M(·), ∆C(·) and ∆G(·) are
uncertain portions. In addition, above functions are all continuous.

For the mechanical system Mẍ + Cẋ + N = τ, under the control τ, the system needs
to follow the desired constraints Aẋ = c. In previous study, the control performance is
directly measured by the constraint error

β(x, t) = A(x, t)ẋ− c(x, t), (9)

and
β̇(x, ẋ, t) = A(x, t)ẍ− b(x, ẋ, t). (10)

In this paper, from a new angle, the control performance is defined as

˙̂β = g(β̂, t) + Aẍ− b, (11)

where g(0, t) = 0, and β̂ is the performance measure which is the general form to describe
the control performance.
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Assumption 3. There is a C1 function V(·) : Rn × R→ R+ and continuous (for i = 1, 2) or C1

(for i = 3), strictly increasing functions γi(·) : R+ → R+, for all (β̂, t) ∈ Rm × R

γ1(‖β̂‖) ≤ V(β̂, t) ≤ γ2(‖β̂‖), (12)

∂V(β̂, t)
∂t

+
∂V(β̂, t)

∂β̂
g(β̂, t) ≤ −γ3(‖β̂‖). (13)

Functions γi(·)(i = 1, 2, 3) satisfy

γi(0) = 0, (14)

lim
r→∞

γi(r) = ∞. (15)

That is, there exists a Lyapunov function V(·) for an uncontrolled nominal system [24].

Assumption 4. For all (x, t) ∈ R2 × R, there is a constant ρE > −1 satisfying

1
2

min
ξ∈Ξ

λm

((
M̄(x, t)M−1(x, ξ, t)− I

)
+
(

M̄(x, t)M−1(x, ξ, t)− I
)T
)
≥ ρE. (16)

Assumption 5. There is a known function Π(·) : R2 ×R2 ×R→ R+ and an unknown vector α
such that

(1 + ρE)
−1 max

ξ∈Ξ

[wwwM̄∆M−1(x, ξ, t)(−C(x, ẋ, ξ, t)ẋ.− N(x, ξ, t) + τ1(x, ẋ, t))

−(∆C(x, ẋ, ξ, t)ẋ + ∆N(x, ξ, t))
www] ≤ αTΠ(x, ẋ, t)

(17)

for all (x, ẋ, t) ∈ Rn × Rn × R and ξ ∈ Ξ.

Remark 4. The function Π(·) is the uncertainty bound.
The servo robust control for the compressor/PMSM system is designed as

τ = τ1(x, ẋ, t) + τ2(x, ẋ, t). (18)

where
τ1(x, ẋ, t) :=M̄1/2(x, t)

(
A(x, t)M̄−1/2(x, t)

)+
×
[
b(x, ẋ, t) + A(x, t)M̄−1(x, t)(C̄(x, ẋ, t)ẋ + N̄(x, t))

]
.

(19)

τ2(x, ẋ, t) = −κη(x, ẋ, t)µ̂(x, ẋ, t)Π2(x, ẋ, t). (20)

In (20), κ is a design parameter greater than or equal to 1 (that is κ ≥ 1), µ̂(x, ẋ, t) is defined
as µ̂(x, ẋ, t) = M̄−1 AT∂V/∂β̂

Let
µ(x, ẋ, t) := µ̂(x, ẋ, t)Π(x, ẋ, t), (21)

then for given scalar constant ε > 0

η(x, ẋ, t) =


1

‖µ(x, ẋ, t)‖ , if ‖µ(x, ẋ, t)‖ > ε,

1
ε

, if ‖µ(x, ẋ, t)‖ ≤ ε.
(22)

Theorem 1. Under the conditions of Assumptions 1–5, the proposed control (18) renders the
compressor/PMSM system satisfies following properties:

(1) Uniform boundedness: For any r > 0 with ‖β̂(t0)‖ ≤ r, there is a d(r) < ∞ such that
‖β̂(t)‖ ≤ d(r) for all t > t0;
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(2) Uniform ultimate boundedness: For any r > 0 with ‖β̂(t0)‖ ≤ r, there is a d > 0 such
that ‖β̂(t)‖ ≤ d̄ for any d̄ > d as t ≥ t0 + T(d̄, r), where T(d̄, r) < ∞.

Proof of Theorem 1. For a function V(·) that satisfies Assumption 3, the first derivative of
it is

V̇ =
∂V
∂t

+
∂V
∂β̂

˙̂β

=
∂V
∂t

+
∂V
∂β̂

(
g(β̂, t) + Aẍ− b

)
=

∂V
∂t

+
∂V
∂β̂

g(β̂, t) +
∂V
∂β̂

[
AM−1(−Cẋ− N) + AM−1(τ1 + τ2)− b

]
.

(23)

The first two portions of (23) on the right side satisfy (13), that is ∂V/∂t + (∂V/∂β̂)g(β̂, t)
≤ −γ3(‖β̂‖).

Then, we analyze the third portion on the right side of (23). We decompose M−1 as
M−1 = M̄−1 +∆M−1 and decompse−Cẋ−N as−Cẋ−N = (−C̄ẋ− N̄)+ (−∆Cẋ−∆N).
We can obtain,

∂V
∂β̂

[
AM−1(−Cẋ− N) + AM−1(τ1 + τ2)− b

]
=

∂V
∂β̂

[
A(M̄−1 + ∆M−1)(−C̄ẋ− N̄ − ∆Cẋ− ∆N)

]
+

∂V
∂β̂

[
A(M̄−1 + ∆M−1)(τ1 + τ2)− b

]
=

∂V
∂β̂

[
AM̄−1(−C̄ẋ− N̄) + AM̄−1τ1 − b

]
+

∂V
∂β̂

A∆M−1(−Cẋ− N + τ1)

+
∂V
∂β̂

AM̄−1(−∆Cẋ− ∆N) +
∂V
∂β̂

A(M̄−1 + ∆M−1)τ2.

(24)

According to (19),

∂V
∂β̂

[
AM̄−1(−C̄ẋ− N̄) + AM̄−1τ1 − b

]
= 0. (25)

Next, according to (17) and µ = M̄−1 AT∂V/∂β̂Π

∂V
∂β̂

A∆M−1(−Cẋ− N + τ1) +
∂V
∂β̂

AM̄−1(−∆Cẋ− ∆N)

=
∂V
∂β̂

A
[
∆M−1(−Cẋ− N + τ1)− M̄−1(∆Cẋ + ∆N)

]
=

∂V
∂β̂

AM̄−1
[

M̄∆M−1(−Cẋ− N + τ1)− (∆Cẋ + ∆N)
]

︸ ︷︷ ︸
≤(1+ρE)αTΠ

≤(1 + ρE)‖µ‖‖α‖.

(26)

According to τ2 = −κηµ̂Π2, we obtain

∂V
∂β̂

A(M̄−1 + ∆M−1)τ2 =
∂V
∂β̂

A(M̄−1 + ∆M−1)(−κηM̄−1 AT ∂V
∂β̂

Π2). (27)
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By a direct algebra,

∂V
∂β̂

AM̄−1(−κηM̄−1 AT ∂V
∂β̂

Π2)

=− ∂V
∂β̂

AM̄−1(M̄−1 AT ∂V
∂β̂

)κηΠ2

=− κη‖µ‖2.

(28)

By Rayleigh’s principle [25], (16) and µ = M̄−1 AT∂V/∂β̂Π, we have

∂V
∂β̂

A ∆M−1︸ ︷︷ ︸
=M−1−M̄−1

(−κηM̄−1 AT ∂V
∂β̂

Π2)

=− (
∂V
∂β̂

AM̄−1Π) (M̄M−1 − I)︸ ︷︷ ︸
=E

(M̄−1 AT ∂V
∂β̂

Π)κη

=− κηµTEµ

≤− κη
1
2

λm(E + ET)‖µ‖2

≤− κηρE‖µ‖2.

(29)

Combing (28) and (29), then

∂V
∂β̂

A(M̄−1 + ∆M−1)(−κηM̄−1 AT ∂V
∂β̂

Π2) ≤ −(1 + ρE)κη‖µ‖2. (30)

According to (22), if ‖µ‖ > ε, then

− (1 + ρE)κη‖µ‖2 = −(1 + ρE)κ‖µ‖, (31)

if ‖µ‖ ≤ ε, then

− (1 + ρE)κη‖µ‖2 = −(1 + ρE)κ
‖µ‖2

ε
. (32)

With (23)–(32) and κ ≥ 1, for ‖µ‖ > ε,

V̇ =
∂V
∂t

+
∂V
∂β̂

˙̂β

≤− γ3(‖β̂‖) + (1 + ρE)‖µ‖ − (1 + ρE)κ‖µ‖
≤− γ3(‖β̂‖),

(33)

for ‖µ‖ ≤ ε, by invoking a2 + b2 ≥ 2ab, a, b > 0, we have

V̇ =
∂V
∂t

+
∂V
∂β̂

˙̂β

≤− γ3(‖β̂‖) + (1 + ρE)‖µ‖‖α‖ − (1 + ρE)κ
‖µ‖2

ε

≤− γ3(‖β̂‖) +
(1 + ρE)ε‖α‖2

4κ
.

(34)

Thus, for all ‖µ‖ ≥ 0

V̇ =
∂V
∂t

+
∂V
∂β̂

˙̂β ≤ −γ3(‖β̂‖) +
(1 + ρE)ε‖α‖2

4κ
. (35)



Actuators 2022, 11, 42 8 of 16

It is concluded that the uniform boundedness with [26]

d(r) =

{
(γ−1

1 ◦ γ2)(R), if r ≤ R,

(γ−1
1 ◦ γ2)(r), if r > R,

(36)

R = γ−1
3

(
(1 + ρE)ε‖α‖2

4κ

)
. (37)

Furthermore, the uniform ultimate boundedness with [26]

T(d̄, r) =


0, if r ≤ R̄,

γ2(r)− γ1(R̄)

γ3(R̄)− γ−1
3

(
(1+ρE)ε‖α‖2

4κ

) , if r > R̄, (38)

and
R̄ = (γ−1

2 ◦ γ1)(d̄). (39)

2.4. Relationship between β̂ and β

Previously, the control performance is defined as β, which is shown in (9). It presents
a “static” measure of how constraints are followed. In this paper, the control performance
β̂ provides a “dynamic” measure of the constraint-following. The novelty of β̂ is the
introduction of g(β̂, t), which allows the flexible design of the control.

The uniform boundedness and uniform ultimate boundedness of the novel system
performance measure β̂ has been proved. There is a relationship between β̂ and β.

Let

e = β̂− β =
∫ t

t0

˙̂βdt−
∫ t

t0

β̇dt =
∫ t

t0

g(β̂, t)dt, (40)

where ˙̂β = g(β̂, t) + Aẍ− b, β̇ = Aẍ− b.
According to Theorem 1, for all t > t0, ‖β̂(t)‖ ≤ d(r) ; and for all t > t0 + T (T < ∞),

‖β̂(t)‖ ≤ d̄. Then, there exists a supremum ḡ such that for all t > t0, ‖g(β̂, t)‖ ≤ ḡ, that is

‖e‖ ≤ ḡ(t− t0), ∀t ≥ t0. (41)

Furthermore, there exists a g such that for all t > t0 + T (T < ∞), ‖g(β̂, t)‖ ≤ g, i.e.,

‖e‖ ≤ g, ∀t ≥ t0 + T. (42)

3. Optimal Parameter Design
3.1. Design of the Performance Index

The proof of Theorem 1 shows that R decreases by increasing the design parameter
of the control (κ). The decrease of R results in the decrease of the ultimate boundedness
region size d̄. However, the increase of κ means an increase in the control cost. Therefore,
we should consider the combined effect of changing κ on R and the control cost.

Let us consider the following performance index

J(κ) = γ−1
3

(
(1 + ρE)ε‖α‖2

4κ

)
+ h(κ). (43)

Here h(·) is a C1 strictly increasing function h(·) : R+ → R+, reflecting the control
cost due to the use of κ. The choice of this function can be a part of the design, which
should both reflect the control cost and facilitate the feasible solution. The problem is to
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seek κ ≥ 1, so that J(κ) renders a minimum value. This can be expressed as a semi-infinite
constrained optimization problem:

min
κ≥1

J(κ). (44)

3.2. Solution of the Optimization Problem

To solve this optimization problem, we proceed to consider the necessary condition

∂J(κ)
∂κ

= 0. (45)

Due to the properties of γ3(·), as prescribed in Assumption 3, the derivative of γ−1
3

exists. In addition, the derivative of h(·) also exists. Taking the derivatives results in

∂γ−1
3

(
(1+ρE)ε‖α‖2

4κ

)
∂
(1+ρE)ε‖α‖2

4κ

(1 + ρE)
ε‖α‖2

4
(−1)κ−2 +

∂h(κ)
∂κ

= 0 (46)

or

(1 + ρE)
ε‖α‖2

4

∂γ−1
3

(
(1+ρE)ε‖α‖2

4κ

)
∂
(1+ρE)ε‖α‖2

4κ

= κ2 ∂h(κ)
∂κ

. (47)

Suppose the solution(s) to this equation exist, which are denoted by κ∗. The sufficient
condition for this optimization problem is then

∂2 J(κ))
∂κ2

∣∣∣∣
κ=κ∗

> 0. (48)

To sum up, necessary conditions provide candidate solutions for optimizing the prob-
lem, while sufficient conditions filter candidate solutions to obtain the (actual) solutions.

Lemma 1. Suppose γ3(r) = l1rp and h(κ) = l2κq, where l1, l2 > 0, p, q > 0. Then, there
always exists an unique solution to the necessary condition (45). The unique solution κ∗ is

κ∗ =

(
w1

w2

) p
1+pq

(49)

where

w1 = (1 + ρE)
ε‖α‖2

4
l
− 1

p
1

1
p

 (1 + ρE)
ε‖α‖2

4
l1

 1
p−1

(50)

and
w2 = l2q (51)

Remark 5. For given l1, p, and q, κ∗ ≥ 1 can be assured by a proper choice of l2.
This is the unique positive solution to the performance index. With (49), the minimum cost J

is given by
Jmin = J(κ)|κ=κ∗ (52)

3.3. Design Procedure

This is believed to be the most thorough study of an optimization problem, with all
three fundamental issues completely solved: existence, uniqueness, and analytic expressions of
both κ and Jmin. Since the assumptions are all very fundamental and the procedure only
invokes standard numerical computations, the control scheme is quite easily applied. We
shall further demonstrate this in the next section. The servo robust control proposed in this
paper can be summarized in the following design step flow chart (Figure 3).
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Figure 3. Design procedure.

Remark 6. The control scheme is quite easy to implement and compute. For implementations, it
only needs position and velocity feedback. Therefore only position and velocity sensors are needed.
No acceleration sensors (accelerometers) or vision sensors are needed. For computations, only
standard algebraic operations (such as additions, multiplications, etc.) are needed. No complicated
operations, such as graphical data conversion or on-line recursive computations, are needed.

4. Simulation and Discussion
4.1. Constraints and Assumptions Verification

Firstly, according to the expression of M in (2), Assumption 1 is verified.
Secondly, suppose that the load mass needs to track the desired trajectory x̂2 = sin t.

The error between the coordinates of the load mass and the desired trajectory is defined as

e = x2 − sin t. (53)

To obtain the desired trajectory quickly, the error can be modified as

ė + ke = 0, k > 0. (54)

Selecting k = 1, (54) can be written as

ẋ2 − cos t + x2 − sin t = 0. (55)
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Differentiating (55) once to obtain

ẍ2 + sin t + ẋ2 − cos t = 0. (56)

Then, constraints (55) and (56) can be converted to the form of Aẋ = c and Aẍ = b
with

A = [0 1],

c = cos t− x2 + sin t,

b = − sin t− ẋ2 + cos t.

(57)

Hence, Assumption 2 is verified.
Thirdly, to verify Assumption 3, the function g(β̂, t) and Lyapunov function V(·)

should be selected. For the simulation of compressor/PMSM system, we select

g(β̂, t) = −Hβ̂, (58)

whereH ∈ R andH > 0. Then, the performance measure ˙̂β is represented by

˙̂β = −Hβ̂ + ẍ2 + sin t + ẋ2 − cos t. (59)

This in turn means in Assumption 3, the function V(·) can be selected as

V = β̂T Q
2H β̂, (60)

where Q > 0 is a scalar. Then, corresponding γi(‖β̂‖), (i = 1, 2, 3) functions are, re-
spectively, shown as γ1(‖β̂‖) = λm(Q/2H)‖β̂‖2, γ2(‖β̂‖) = λM(Q/2H)‖β̂‖2, γ3(‖β̂‖) =
Hλm(Q/H)‖β̂‖2

Fourth, we consider the inertia moment of motor and load are uncertain and shown
as Jm = J̄m + ∆Jm, Jl = J̄l + ∆Jl , where J̄m,l > 0 are constant nominal values and ∆Jm,l are
the uncertainties. We also consider the friction of viscous motor, the friction of viscous
load, and the inner damping coefficient of the shaft are uncertain and they are, respectively,
shown as cm = c̄m + ∆cm, cl = c̄l + ∆cl , and cs = c̄s + ∆cs, where c̄m,l,s > 0 are constant
nominal values and ∆cm,l,s are the uncertainty. The elasticity coefficient of the shaft is
also considered to be uncertain and shown as ks = k̄s + ∆ks, where k̄s > 0 is the constant
nominal value and ∆ks is the uncertainty. Due to M̄(x, t)M−1(x, ξ, t) − I > −1 thus
Assumptions 4 can be verified.

Fifthly, we assume ∆Jm ≤ ∆Jm ≤ ∆ J̄m, ∆Jl ≤ ∆Jl ≤ ∆ J̄l , ∆cm ≤ ∆cm ≤ ∆c̄m, ∆cl ≤
∆cl ≤ ∆c̄l , ∆cs ≤ ∆cs ≤ ∆c̄s, ∆ks ≤ ∆ks ≤ ∆k̄s,. Then, Assumption 5 is met by choosing

αTΠ(x, ẋ, t) = (1 + ρE)
−1

8

∑
i=1

αi fi, (61)

where
f1 =

 J̄m ẋ1
,

f2 =
 J̄m ẋ2

,

f3 =
 J̄m(x1 − x2)

,

f4 =|(c̄m + c̄s)ẋ1|+ |c̄s ẋ2|+
k̄s(x1 − x2)

,

f5 =
 J̄l ẋ1

,

f6 =
 J̄l ẋ2

,

f7 =
 J̄l(x1 − x2)

,

f8 =
 J̄l(− sin t− ẋ2 + cos t)

.
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α1 =max
(wwww∆c̄m + ∆c̄s

J̄m + ∆ J̄m

wwww,
wwww∆c̄m + ∆cs

J̄m + ∆ J̄m

wwww,
wwww∆cm + ∆c̄s

J̄m + ∆ J̄m

wwww,
wwww∆cm + ∆cs

J̄m + ∆ J̄m

wwww,wwwww∆c̄m + ∆c̄s

J̄m + ∆Jm

wwwww,

wwwww∆c̄m + ∆cs
J̄m + ∆Jm

wwwww,

wwwww∆cm + ∆c̄s

J̄m + ∆Jm

wwwww,

wwwww∆cm + ∆cs
J̄m + ∆Jm

wwwww
)

α2 =max

(wwww ∆c̄s

J̄m + ∆ J̄m

wwww,
wwww ∆cs

J̄m + ∆ J̄m

wwww
wwwww ∆c̄s

J̄m + ∆Jm

wwwww,

wwwww ∆cs
J̄m + ∆Jm

wwwww
)

,

α3 =max

(wwww ∆k̄s

J̄m + ∆ J̄m

wwww,
wwww ∆ks

J̄m + ∆ J̄m

wwww
wwwww ∆k̄s

J̄m + ∆Jm

wwwww,

wwwww ∆ks
J̄m + ∆Jm

wwwww
)

,

α4 =max

(wwww ∆ J̄m

J̄m + ∆ J̄m

wwww,
wwww ∆Jm

J̄m + ∆ J̄m

wwww
wwwww ∆ J̄m

J̄m + ∆Jm

wwwww,

wwwww ∆Jm
J̄m + ∆Jm

wwwww
)

,

α5 =max

(wwww ∆c̄s

J̄l + ∆ J̄l

wwww,
wwww ∆cs

J̄l + ∆ J̄l

wwww
wwwww ∆c̄s

J̄l + ∆Jl

wwwww,

wwwww ∆cs
J̄l + ∆Jl

wwwww
)

,

α6 =max
(wwww∆c̄l + ∆c̄s

J̄l + ∆ J̄l

wwww,
wwww∆c̄l + ∆cs

J̄l + ∆ J̄l

wwww,
wwww∆cl + ∆c̄s

J̄l + ∆ J̄l

wwww,
wwww∆cl + ∆cs

J̄l + ∆ J̄l

wwww,wwwww∆c̄l + ∆c̄s

J̄l + ∆Jl

wwwww,

wwwww∆c̄l + ∆cs
J̄l + ∆Jl

wwwww,

wwwww∆cl + ∆c̄s

J̄l + ∆Jl

wwwww,

wwwww∆cl + ∆cs
J̄l + ∆Jl

wwwww
)

α7 =max

(wwww ∆k̄s

J̄l + ∆ J̄l

wwww,
wwww ∆ks

J̄l + ∆ J̄l

wwww
wwwww ∆k̄s

J̄l + ∆Jl

wwwww,

wwwww ∆ks
J̄l + ∆Jl

wwwww
)

,

α8 =max

(wwww ∆ J̄l
J̄l + ∆ J̄l

wwww,
wwww ∆Jl

J̄l + ∆ J̄l

wwww
wwwww ∆ J̄l

J̄l + ∆Jl

wwwww,

wwwww ∆Jl
J̄l + ∆Jl

wwwww
)

.

4.2. Parameters Selection

For simulation, the nominal values of parameters are shown in Table 2.

Table 2. Parameters of two-mass system.

Parameter Value

Jm 0.4 kg ·m2

Jl 3 kg ·m2

cm 0.7 N ·m/(rad/s)
cl 5 N ·m/(rad/s)
cs 0.2 N ·m/(rad/s)
ks 3 Nm/rad

The uncertainties are selected as follows: ∆Jm = 0.1 sin 5t, ∆Jl = cos 3t, ∆cm = 0.1 cos 3t,
∆cl = sin 5t, ∆cs = 0.1 cos 10t, ∆ks = sin t. The initial conditions are selected as x1(0) = 2,
x2(0) = 2, ẋ1(0) = 0, ẋ2(0) = 0. We select h(κ) = aκ, a > 0 is the weighting. The parame-
ters are selected to be ε = 0.1, Q = 10,H = 0.1, p = 2, q = 1, l1 = 10, a = l2 = 0.001.

4.3. Alternative LQR Design: A Comparison

LQR is a robust control which has been thoroughly studied both in theory and practice.
Therefore, it is selected to compare with the proposed servo robust control. Based on LQR
control, the linearization of (1) can be transformed into

ẋ = Dx + Eu, (62)
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where

D =


0 0 1 0
0 0 0 1
− ks

Jm
ks
Jm

− cm+cs
Jm

cs
Jm

ks
Jl

− ks
Jl

cs
Jl

− cl+cs
Jl

, (63)

E =


0 0
0 0
1
Jm

0
0 − 1

Jl

, (64)

4.4. Simulations and Discussions

The region bounded by the norm of the system performance error (‖e‖) and t is
expressed as

S =
∫ Tt

0
‖e‖dt, (65)

where Tt is the simulation time.
Variable time step ODE15i integrator is used for simulation in MATLAB environment.

The simulation results are shown in Figures 4–8. Figure 4 shows the comparison of system
performance x2 between the servo robust control and LQR control. The error between the
system performance and the desired trajectory is shown in Figure 5. It is clearly shown that
the servo robust control can reach the uniform boundedness more quickly than LQR control.
In addition, the uniform ultimate bounded region under the servo robust control is much
smaller than that under LQR control. The comparison of S is shown in Figure 6. The S
under the servo robust control is more than five times smaller than that under LQR control.
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Figure 4. The system performance.
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Figure 6. Comparison of the accumulative constraint error S.

Figure 7 shows the comparison of τ1 under two controls (servo robust control and LQR
control). At the beginning of the simulation, the LQR control has an overshoot, while the
robust control is smooth. There is a surge in the control input of the proposed servo robust
control. The reason for the surge in Figure 7 is the initial condition deviation. As shown
in (52), the desired trajectory is x̂2 = sint. The problem can be mitigated by adjusting the
parameter κ.

The comparison of β (the “static” measure) and β̂ (the “dynamic” measure) under the
servo robust control is shown in Figure 8. The “static” measure as well as the “dynamic”
measure both can quickly reach a plateau.
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Figure 8. The relationship between β and β̂.
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5. Conclusions

To achieve high precision control of a nonlinear and uncertain compressor/PMSM
system, the desired performance is translated into constraints for processing. Then, a general
performance measure with dynamic characteristics is used to solve the constraint following
the control problem. The introduction of g(β̂, t) produces the “dynamic” measure β̂, which
enables flexible control design. Regardless of uncertainty, the control renders the measure
β̂ uniformly bounded and uniformly ultimately bounded. The next inquiry is to seek an
optimal choice of the control design parameter κ. This process is separated into two steps.
The first step is to explore the necessary condition, which generates candidate solutions.
The second step is to use a sufficient condition to screen these candidate solutions to
identify the actual optimal solution. The simulation results show the effectiveness of the
new control design.

The paper addresses one performance index and one design parameter for the control
design of the two-mass system. Future explorations may involve optimal design for
multiple performance objectives and multiple design parameters.
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