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Abstract: Glycans as sugar polymers are important metabolic, structural, and physiological regu-
lators for cellular and biological functions. They are often classified as critical quality attributes to
antibodies and recombinant fusion proteins, given their impacts on the efficacy and safety of biologics
drugs. Recent reports on the conjugates of N-acetyl-galactosamine and mannose-6-phosphate for
lysosomal degradation, Fab glycans for antibody diversification, as well as sialylation therapeutic
modulations and O-linked applications, have been fueling the continued interest in glycoengineer-
ing. The current advancements of the human glycome and the development of a comprehensive
network in glycosylation pathways have presented new opportunities in designing next-generation
therapeutic proteins.

Keywords: glycosylation pathways; N-acetyl-galactosamine; mannose-6-phosphate; lysosomal degrada-
tion; Fab glycans; antibody diversification; sialylation; glycome; O-linked glycans; therapeutic proteins

1. Introduction

Glycan modification [1–4], in mammalian glycoproteins, glycolipids and recently in
RNAs [5], represents the most complex and diverse networks and pathways for post-
translational modifications. The tremendous structural diversity of glycan polymers are
synthesized without a template, but rather through a sequential step addition by compart-
mentally restricted cellular glycosylation machineries which employ around 700 genes
encoding glycotransferase enzymes, transporters and chaperones required for establishing
the ensemble of glycans [1,6]. Apart from the non-enzymatic glycation between glucose
and lysine/arginine [7] as well as cytosolic and nuclear O-GlcNAcylation [8], protein glyco-
sylation processes involve sequentially orchestrated modification reactions in the metabolic
networks of the endoplasmic reticulum (ER) and the Golgi during protein trafficking. It
has been estimated that the known glycome and the glycosylation network are generated
through 16 distinct glycosylation pathways according to sugar–protein linkages, initial
monosaccharides linked to proteins, and unique initiating enzymes [1].

Glycan attachments to protein are generally classified into four major types. N-
linked glycosylation is through asparagine (Asn) that is initiated at the ER by the en bloc
transfer of core glycans via oligosaccharyltransferase (OST) and further modified by various
glycoenzymes and glycotransferases in the ER and the Golgi [1–3,9]. O-linked glycosylation
involves covalent modification to the hydroxyl groups of serine (Ser), threonine (Thr),
or tyrosine (Tyr) with direct attachments of seven different sugars including N-acetyl-
galactosamine (GalNAc), L-fucose (Fuc), N-acetyl-D-glucosamine (GlcNAc), D-mannose
(Man), D-glucose (Glc), D-xylose (Xyl), and D-galactose (Gal). GalNAc-type and Xyl-type
O-linked glycosylation start at the Golgi by polypeptide GalNAc transferases (GALNTs)
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and O-xyltransferases (XYLTs), respectively. Fuc, Glc, and GlcNAc types of O-linked
glycosylation are initiated in the ER. Mammalian Man-type O-linked glycosylation is
initiated in the ER and further modified in the Golgi. The other two ways for glycan
attachments are glypiation through GPI linkage and C-linked to tryptophan (Trp) [1].

The natural building blocks for glycans in mammals are 10 monosaccharides in-
cluding D-glucuronic acid (GlcA), D-ribose (Rib), Fuc, Glc, GlcNAc, Gal, GalNAc, Man,
N-acetylneuraminic acid (Neu5Ac), and Xyl, which can be derived from the corresponding
dolichol-linked donors or activated donor sugar nucleotides [1–3]. The structural diver-
sification of glycans through the sequential addition of monosaccharides mostly occur
in the Golgi for oligosaccharide extending, branching, and capping. The final glycan
structures are determined by glycosyltransferases’ kinetic properties, their compartmental
distributions along the sequential biosynthetic routes, as well as factors such as substrate
availability and actions of protein chaperones and glycosidases.

Therapeutic proteins, such as antibodies and recombinant fusion proteins, are gly-
coproteins in which glycan modifications are often considered critical quality attributes
and can be engineered for therapeutic efficacy and safety improvements (according to
several reviews [6,10–13]). With a global view on the human glycome being established
and a deeper understanding on glycosylation pathways, new opportunities in harnessing
human protein glycosylation functions are emerging (Figure 1). This article highlights new
applications of GalNAc and mannose-6-phosphate (M6P) glycan modification in protein
therapeutics (Figure 2). New findings on antibody repertoire glycan diversification, O-
linked mannosylation, glycan remodeling on branching, sialylation, and fucosylation were
also discussed.

Antibodies 2022, 11, x FOR PEER REVIEW 2 of 13 
 

 

(Man), D-glucose (Glc), D-xylose (Xyl), and D-galactose (Gal). GalNAc-type and Xyl-type 
O-linked glycosylation start at the Golgi by polypeptide GalNAc transferases (GALNTs) 
and O-xyltransferases (XYLTs), respectively. Fuc, Glc, and GlcNAc types of O-linked gly-
cosylation are initiated in the ER. Mammalian Man-type O-linked glycosylation is initi-
ated in the ER and further modified in the Golgi. The other two ways for glycan attach-
ments are glypiation through GPI linkage and C-linked to tryptophan (Trp) [1]. 

The natural building blocks for glycans in mammals are 10 monosaccharides includ-
ing D-glucuronic acid (GlcA), D-ribose (Rib), Fuc, Glc, GlcNAc, Gal, GalNAc, Man, N-
acetylneuraminic acid (Neu5Ac), and Xyl, which can be derived from the corresponding 
dolichol-linked donors or activated donor sugar nucleotides [1–3]. The structural diversi-
fication of glycans through the sequential addition of monosaccharides mostly occur in 
the Golgi for oligosaccharide extending, branching, and capping. The final glycan struc-
tures are determined by glycosyltransferases’ kinetic properties, their compartmental dis-
tributions along the sequential biosynthetic routes, as well as factors such as substrate 
availability and actions of protein chaperones and glycosidases. 

Therapeutic proteins, such as antibodies and recombinant fusion proteins, are glyco-
proteins in which glycan modifications are often considered critical quality attributes and 
can be engineered for therapeutic efficacy and safety improvements (according to several 
reviews [6,10–13]). With a global view on the human glycome being established and a 
deeper understanding on glycosylation pathways, new opportunities in harnessing hu-
man protein glycosylation functions are emerging (Figure 1). This article highlights new 
applications of GalNAc and mannose-6-phosphate (M6P) glycan modification in protein 
therapeutics (Figure 2). New findings on antibody repertoire glycan diversification, O-
linked mannosylation, glycan remodeling on branching, sialylation, and fucosylation 
were also discussed. 

 
Figure 1. Major human glycan pathways. (A) N-glycan elongation, branching, and capping path-
ways. (B) GalNAc pathway [14]. (C) M6P pathway [15]. (D) O-mannosylation [16]. (E) O-GalNAc 
pathway (circled). 

Figure 1. Major human glycan pathways. (A) N-glycan elongation, branching, and capping path-
ways. (B) GalNAc pathway [14]. (C) M6P pathway [15]. (D) O-mannosylation [16]. (E) O-GalNAc
pathway (circled).



Antibodies 2022, 11, 5 3 of 13Antibodies 2022, 11, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 2. New therapeutic applications of N-linked and O-linked glycan modifications. (A) Fab N-
glycan for the antibody diversity [17]. (B) M6P-mediated lysosomal degradation [18]. (C) GalNAc-
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O-mannosylation matriglycan as a functional decoration for α-Dystroglycan [24,25]. 
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2. Glycans as an Unconventional Strategy for Antibody Diversification

N-linked glycans are present in 15–25% of human IgG antibodies’ variable domain
(heavy chain variable domain (VH) or light chain variable domain (VL)) regions [26,27].
These N-glycosylation sites encoded by the V-region genes (so-called Fab N-glycans) are
a result of somatic hypermutation [26,28,29], because very few germline alleles carry N-
glycosylation consensus sequences (NXS/T) [30]. In recent years, more and more evidences
indicate that Fab N-glycans can influence antibody binding affinity. Several mechanisms
on how N-glycan in antibody V-regions impacts epitope binding have been proposed,
including the bulk size of N-glycan to fill out the space between the antigen epitope and
the antibody paratope [31], charge–charge interaction between N-glycan sialic acids and
the antigen [17,28], and through steric hinderance effects that affect the binding [32]. The
IgG4 subclass has the highest prevalence of V-region glycosylation (44% versus 11–15%
in other subclasses) [28]. IgE has a two-fold higher propensity for Fab glycans than
IgA or IgG1, suggesting that elevated Fab glycosylation might be a hallmark of Th2-like
responses [33]. A large portion of autoantibodies in rheumatoid arthritis and certain B-cell
lymphomas were found to contain Fab N-glycans [34–36], which are also present in human
anti-idiotype autoantibodies to adalimumab and infliximab [28]. Removing N-glycans from
the complementarity-determining regions (CDRs) of antibodies can lead to a significant
decrease in the antibody binding affinity [28,37,38]. Removing N-glycan located within the
antigen-binding sites of a human IgG alloantibody decreases its neutralization towards
factor VIII (FVIII) procoagulant activity without losing its binding affinity, suggesting that
its Fab glycan blocks the interaction between FVIII and the chaperone partner through
steric hinderance [32]. Fab glycans in the framework or constant regions play additional
roles in increasing antibody stability [29] and in vivo half-life [39].

The structure of N-glycans within the V region are different from those rigid under-
sialylated biantennary Fc-glycans attached to Asn297 in the Fc region, because they are
typically surface-exposed α2,6-linked sialylated complex biantennary glycans [37,40,41].
The negatively charged sialic acid on these V-region glycans have been found to con-
tribute to the increased binding affinity [28,38,40]. This data indicate that the introduction
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of N-linked glycans to variable domains is an additional layer for immune repertoire
diversification [17].

Engineering N-glycans into antibody-binding sites has been utilized for therapeutic
rational design (Figure 2A). Engineering an N-linked consensus site into an ibalizumab
light chain recognizes human immunodeficiency virus (HIV)’s envelope glycoprotein
gp120 with a loss of an N-glycan in the V5 loop, which is otherwise resistant to the HIV-1-
neutralizing activity [31]. Similarly, introducing Fab glycans into adalimumab enhances
the TNFα binding of two antibody glycovariants by two-fold [28]. Introducing Fab N-
glycans can be a way to decrease antigen-binding poly-reactivity and self-reactivity [42,43].
The introduction of an N-linked glycan into an antibody-variable domain also has been
employed for improving antibody solubility [44,45]. Although engineering in Fab N-
glycosylation can increase manufacturing challenges, the high degree of conformational
dynamics from glycans can enhance the chemical diversity of antibody paratopes and thus
the functionalities.

3. GalNAc Binder—A New Application Based on Previous Findings

Therapeutic antibodies can exert biological actions on signal transduction pathways
by blocking interactions between receptors and ligands. Three recent studies reported
a new therapeutic mechanism by conjugating tri-GalNAc to antibodies for directing the
lysosomal degradation of several therapeutic ligands and receptors [19–21]. These so-called
lysosome-targeting chimeras (LYTACs) are capable of inducing a rapid internalization
and degradation of membrane targets and soluble targets based on the binding to the
liver-specific asialoglycoprotein receptor (ASGPR) and lysosome machineries (Figure 2C).

Naturally, GalNAc residues (Figure 1B,E) can be added to proteins through either
N-glycan LacdiNAc modification or O-linked GalNAc addition [1,3,6]. The tight binding
to ASGPR or mannose receptor (MR) has been reported for N-glycan LacdiNAc modi-
fied proteins [46]. LacdiNAc is a less common N-linked glycan structure [14,47–50]. It
contains the unique GalNAcβ1-4GlcNAcβ unit, which can be additionally sulfated, fuco-
sylated and sialylated. About 12 glycoproteins are confirmed with N-linked LacdiNAc
glycans, i.e., luteinizing hormone. β1,4GalNAcT3 [51] and β1,4GalNAcT4 [52] account
for GalNAc transfer and have a broad tissue expression coverage including fetal kidney
and brain. It has been reported that adding a carboxyl-terminal 19-amino-acid α-helix
stretch with several basic amino acids is sufficient to mediate GalNAc transfer to N-linked
oligosaccharides [47,53,54]. Other GalNAc motifs involve three structural loops with aro-
matic side chains [50], as well as additional unidentified motifs [54].

Since LYTAC molecules conjugated with GalNAc can be targeted for lysosomal degra-
dation, fusing the GalNAc transfer motif to the termini of antibodies or therapeutic fusion
proteins should enable the LacdiNAc modification on these proteins during mammalian cell
culturing. HEK293 cells express the key glycoenzymes of β1,4GalNAcT3, β1,4GalNAcT4,
and GalNAc-4-sulfotransferases-1 and -2, and a stable production in HEK293 has generated
clinical and commercial biotherapeutics [55]. In fact, because CHO cells either lack or do
not express several glycosyltransferases, therapeutic proteins such as recombinant human
erythropoietin are found to be LacdiNAc-modified when expressed in HEK293 cells, but
not in CHO cells [55,56]. Alternatively, CHO cells with necessary glycoenzymes can be
engineered for LacdiNAc modification [47].

4. M6P—A Lysosomal Route for Non-Lysosomal Enzymes

M6P modification (Figure 1C) in specific N-linked glycans serves as a recognition
signal for lysosomal routing [11,15,57]. When lysosomal hydrolases synthesized in the ER
are transported to the cis-Golgi network, they are selectively modified by a two-step reaction.
GlcNAc-1-phosphotransferase transfers a GlcNAc-1-phosphate residue from UDP-GlcNAc
to C6-positions of specific mannoses in high-mannose N-glycans of lysosomal hydrolases.
The GlcNAc-1-phosphotransferase is a Golgi hexameric transmembrane enzyme encoded
by two different genes, i.e., GNPTAB and GNPTG [15]. Defects in this key enzyme causes
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lysosomal storage disease mucolipidosis II and III. The second step of M6P generation is
catalyzed by an N-acetylglucosamine-1-phosphodiester α-N-acetyl-glucosaminidase (also
known as “uncovering enzyme”) for the removal of the terminal GlcNAc to expose the
signal. The uncovering enzyme is a tetrameric type I membrane protein cycling between the
trans-Golgi network and the plasma membrane. No pathological conditions are associated
with the loss of its enzymatic activity.

In the trans-Golgi network, the M6P modification allows for the segregation of lysoso-
mal hydrolases from other trafficking proteins through a selective binding to two M6P recep-
tors, i.e., the cation-independent M6P receptor (CI-MPR) and/or the cation-dependent M6P
receptor (CD-MPR) [15,57]. The clathrin-coated ligand receptor complex transport vesicles
bud off and fuse with late endosomes. At the low pH of the late endosome (Figure 2B), the
M6P receptors dissociate from the ligands and be recycled back to the trans Golgi network.

The therapeutic application of M6P modification is the lysosomal delivery of the en-
zyme replacement therapy for lysosomal diseases, such as Fabry disease, mucopolysachari-
dosis I, II, and VI, and Pompe disease [58]. High-affinity M6P analogues with good stability,
such as mannose-6-phosphonate (M6Pn), could be synthesized [59] and conjugated, like the
M6P-containing oligosaccharides [60], to recombinant enzymes for decreasing the effective
dose for less accessible tissues. M6P is also present in glycoprotein D of herpes simplex
virus (HSV) for virus entry into cells [61]. Recombinant CI-M6PR and pentamannose-
phosphate are used to block HSV plaque formation [62]. Most recently, M6P has been
exploited for lysosomal degradation [18]. Because the 6-phosphoester of M6P can undergo
hydrolysis in human serum, the phosphatase-inert serine-O-M6Pn glycopeptide is con-
jugated to an antibody to form a different kind of LYTACs that interacts with CI-M6PR
for shuttling to the lysosomal compartment for the degradation of extracellular proteins
engaged by the antibody component of the conjugates. For the biological production of
M6P-modified glycoproteins, one strategy is to utilize engineered yeast cells to synthesize
Man-P-6-Man glycans, in which phosphate-capped Man residues can be subsequently re-
moved by a newly discovered α-mannosidase to generate M6P-modified human lysosomal
enzymes [63]. These new tools and new findings should enable further glycoengineering
of next-generation biologics for lysosomal targeting.

5. O-Linked Glycan: New Tricks for an Old Player for Biological Systems

GalNAc-type-O-glycosylation of Ser/Thr is the most common type of O-linked glyco-
sylation, which can be initiated by up to 20 different GALNTs, with a portion seemingly
having protein-specific functions. For example, some of these enzymes are responsible for
generating simple truncated O-linked glycans known as cancer-associated Tn antigens [1,6].
GALNT3 uniquely modulates the processing site of FGF23 that regulates phosphate home-
ostasis [64]. GALNT11 specifically modifies the low-density lipoprotein receptor-related
receptor family and enhances ligand binding [65]. GalNAc-type-O-glycosylation in re-
combinant TNFR:Fc fusion protein has a significant impact on its pharmacokinetics [66].
O-glycosylation affects ADAM proteases [67], β1-adrenergic receptor activation [68], and
atrial natriuretic peptide potency [69]. O-glycans attached to neuropeptide Y and the
glucagon family members modulate receptor activation properties and extend half-lives,
demonstrating the importance of O-glycosylation in peptide hormones. O-Fucosylation
and O-glucosylation stabilized the folding of EGF-like and thrombospondin type 1 repeat
domains [70,71]. Recently, a proteomic-based strategy uncovers that one-third of 279 classi-
fied peptide hormones carry O-glycans and that many of these identified O-glycosites are
predicted to serve roles in proprotein processing, receptor interaction, biodistribution, and
biostability [72]. Since O-glycans can impact biotherapeutics in a number of ways, such
as impacting pharmacokinetics [66], decreasing the binding affinity of peptide–antibody
fusions [73], and unexpected O-glycosylation in antibody fusion linkers for manufacturing
issues, understanding this old player for the biological systems could help to develop new
tricks for biotherapeutics applications.
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Man-type O-linked glycosylation takes place in both ER and Golgi (Figure 1D). The
human protein-O-mannosyl transferase POMT1/2, the initiating heteromeric complex,
specifically recognizes the central mucin-like domain within α-dystroglycan (α-DG) [16]
and a very limited number of other substrates [74]. In fact, this rare type of O-linked
mannosylation found in α-DG is called matriglycan. It contains phosphorylation, ribitol,
GlcA, and Xyl repeats that interact with extracellular matrix proteins and old-world are-
naviruses (Figure 2E) [75]. This “functional decoration” is part of a transmembrane link of
the dystrophin-associated glycoprotein complex (DGC) between the extracellular matrix
such as laminins, intracellular dystrophin, and the cytoskeleton, for providing resistance to
sheared stresses during muscle activity. A bispecific antibody fusion could be generated,
serving as a molecular linker to ameliorate sarcolemmal fragility for improving muscle
function [76]. A host of enzymes such as the bifunctional glycosyltransferase LARGE
are required for synthesizing α-DG mannosylation [16,77]. The local injection of recom-
binant α-dystroglycan (α-DG) produced by HEK293 co-transfected with LARGE rescues
muscle activity in α-DG knockout or Largemyd-mutant mice [78]. When the matriglycan-
glycosylated α-DG is injected systemically, very little change is noted in muscle tissues,
presumably due to the rapid clearance by the MR or ASGPR [76]. This result indicates
that O-mannosylation of α-DG does interact with the extracellular matrix for therapeutic
remedy but has issues of bioavailability in circulation. Further protein engineering work
such as chemically conjugated matriglycan or cell-line engineering [75] is required for
harnessing this modification for therapeutic applications.

6. Glycoengineering as a Continued Theme for Biotherapeutics Applications

Recent breakthroughs in gene editing have revolutionized glycoengineering in mam-
malian cells and led to improved designs of therapeutic proteins [1,6,12]. The consistent
production of safer and potentially more efficacious biotherapeutics have been the primary
goals for these efforts. Lysosomal glucocerebrosidase (GBA) is one of the earliest glyco-
engineered examples produced with high-mannose N-linked glycans for macrophages
affected by GBA storage defect [79]. Broader applications of therapeutic N-glycan engi-
neering have been the desire to optimize N-glycan α2-3-linked sialylation (Figure 1A),
as N-glycan decoration with this moiety has been demonstrated to allow molecules to
evade clearance by ASGPRs [80,81]. Recently, recombinant α-galactosidase used for the
treatment of the lysosomal-disorder Fabry disease was produced with N-glycans having
α-2,3-linked sialic acid, which has improved circulation and biodistribution with efficacy
in a mouse model [82]. Through engineering additional N-linked consensus sites such as
hyperglycosylated erythropoietin [83], a recombinant ENPP1-Fc for enzyme-replacement
therapy showed the improved pharmacodynamics and in vivo activity of ENPP1-Fc [84].
α2-6-linked N-glycan sialylation has also been a focus of glycoengineering efforts, particu-
larly with antibodies. Intravenous immunoglobulin (IVIG) is composed of polyclonal IgG
harvested from healthy donors and is used in the treatment of autoimmune and inflam-
matory diseases [85]. Previous studies have demonstrated that the Fc portion of the Ig is
sufficient for this anti-inflammatory activity and that this property is due to α2-6-linked
sialylation on the N-glycan [86], triggering the conformational change of Fc for enabling
the interaction with type II FcγRs [87]. The administration of soluble forms of glycosyl-
transfersases has also shown the potential as a novel strategy to treat autoimmune diseases.
Recombinant soluble galactosyltransferase and α2-6-linked sialyltransferase enzymes were
demonstrated to have a similar effect to IVIG on autoimmune inflammation, presumably
via the in vivo glycoengineering of endogenous IgG [88]. While MGAT3 inhibits complex
N-glycan branching, the overexpression of MGAT4 and MGAT5, which add β1,4- and
β1,6-linked GlcNAc to the α3- and α6-arms of the N-glycan, increases the glycan antennary
structure and potentially the number of sites available for sialylation [89]. Recently, the
sialylation of IgE has been proposed as a determinant of allergic pathogenicity, and the
treatment with neuraminidase enzyme or administering asialylated IgE might represent
an interesting therapeutic strategy for allergic disease [90]. Cetuximab was shown to be
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recognized by IgE antibodies targeting Gal-α-1,3-Gal (αGal), demonstrating the clinical
effects of immunogenic glycans and the need for glycoengineering [91]. Conversely, anti-
body sialidase fusions and conjugates (Figure 2D) can de-sialylate cancer cells and enhance
immune responses in vivo [22,23,92].

Removing immunogenic glycans widely expressed in non-primate mammalian cells,
such as αGal epitope and N-glycolyneuraminic acid, has long been a glycoengineering
approach [1,10,93]. To simplify functional analysis and assignments, glycoengineering has
revealed isoenzyme functions in specific steps of glycosylation pathways, including the
knockout study demonstrating that ST3GAL4, not ST3GAL3/6, is the major contributor
in forming the sialyl-LewisX (SLx) for lymphocyte trafficking and extravasation [94]. It
also helps define virus infection requirements such as the involvement of α2-3 and α2-
6 sialic acids for enterovirus D68 recognition [95,96], as well as α2-fucosyltransferase
(FUT2)-modified blood group H glycan epitope for norovirus [97]. The enhancement of
antibody-dependent cellular cytotoxicity via the production of afucosylated IgGs is the most
widely used application for the glycan engineering of therapeutics and has been extensively
reviewed [6,98–102]. This has been accomplished via several different mechanisms, the
most well studied one being the direct knockout of the fucosyltransferase responsible for
the addition of the sugar, FUT8 [103]. Alternatively, several other indirect approaches
have been successfully implemented. One method is the alteration of genes coding for
glycosyltransferases, of which the activity impacts that of FUT8, such as knockout of the
N-acetylglucosaminyltransferase GnTI [104], or overexpression of GnTIII and variant forms
thereof, which adds bisecting GlcNAc to N-glycans [105]. The targeting of the GDP-fucose
donor substrate synthesis pathway has also proven successful, via the overexpression of
prokaryotic enzymes, which can divert key intermediates in the GDP-fucose biosynthetic
pathway into non-functional products [106,107]. In addition, the knockout of the resident
Golgi GDP-fucose transporter Slc35c1 leads to the production of afucosylated recombinant
proteins [108]. A number of chemical inhibitors targeting these proteins have been designed
with fucose analogs such as fluoro- and thio-fucose [109–115]. The fluorinated fucose
analogs are taken up by cells and converted via the salvage pathway to the corresponding
donor substrates that can compete with the actual enzymatic substrate. The intracellular
accumulation of these analogue sugars inhibit the de novo synthesis by acting as a feedback
inhibitor [112,114,115]. The production of afucosylated reactive non-neutralizing IgG1
during Dengue virus infection triggers platelet reduction and is a significant risk factor for
thrombocytopenia [116]. Besides modulating the interaction between IgG1 and the FcγRIIIa
receptor, FUT8-mediated core fucosylation also regulates the EGF-EGFR binding [117]
and T-cell receptor activation [118]. The level of core fucosylation and galactosylation
in IgG can be further fine-tuned by an inducible expression strategy [119]. In addition,
the terminal galactosylation of IgG plays an important role in modulating complement-
dependent cytotoxicity (CDC) activity [120–123]. It has been recently demonstrated that
galactosylation promotes the hexamerization of IgG1, which consequently enhances C1q
binding and CDC activity [120,122].

7. Conclusions and Perspectives

In summary, major advances in single-cell transcriptomes and proteomes, precise
glycan analytical tools, in silico modeling, vast pathway databases, and mature nuclease-
based gene editing have provided an unprecedented opportunity to study the global
functions of human glycome. Efficient genetic approaches such as glycoCRISPR (gene
targeting for human glycosyltransferase genes [124]) and cell-based libraries of displayed
glycome (GAGOme [125] and GlycoDisplay [126]), as well as chemical and metabolic
glycoengineering [127], have offered simple and direct ways to explore and exploit glycosy-
lation. Modularization strategies for the de novo interpretation of glycan structures such as
StrucGP [128] should facilitate in-depth structural and functional studies on glycoproteins.
These new understandings of glycan modifications in both cellular and biological systems
should produce new insights into designing safer and more efficacious biotherapeutics.
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