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Abstract: A variable domain of heavy chain antibody (VHH) has different binding properties than
conventional antibodies. Conventional antibodies prefer binding to the convex portion of the antigen,
whereas VHHs prefer epitopes, such as crevices and clefts on the antigen. Therefore, developing
candidates with the binding characteristics of camelid VHHs is important. Thus, To this end, a
synthetic VHH library that reproduces the structural properties of camelid VHHs was constructed.
First, the characteristics of VHHs were classified according to the paratope formation based on
crystal structure analyses of the complex structures of VHHs and antigens. Then, we classified
330 complementarity-determining region 3 (CDR3) structures of VHHs from the Protein Data Bank
(PDB) into three loop structures: Upright, Half-Roll, and Roll. Moreover, these structures depended on
the number of amino acid residues within CDR3. Furthermore, in the Upright loops, several amino
acid residues in the FR2 are involved in the paratope formation, along with CDR3, suggesting that
the FR2 design in the synthetic library is important. A humanized synthetic VHH library, comprising
two sub-libraries, Upright and Roll, was constructed and named PharmaLogical. A validation study
confirmed that our PharmaLogical library reproduces VHHs with the characteristics of the paratope
formation of the camelid VHHs, and shows good performance in VHH screening.

Keywords: variable domain of heavy chain antibodies; synthetic library; cDNA display; therapeutic
antibodies; high throughput screening

1. Introduction

In 1993, it was reported that camelids produced unconventional heavy-chain-only
antibodies that bind to antigens solely by the variable domain of their heavy chain. The
variable domain of heavy chain of heavy chain antibody (VHH) was expected to be the next
generation of therapeutic antibodies [1]. In those days, however, fierce competition in
the development of conventional human or humanized antibodies had only begun, and
thus, a few pharmaceutical companies were seriously looking at camelid VHHs. Among
them, Ablynx (a subsidiary of Sanofi since 2018) generated several VHH clinical candidates,
including caplacizumab. Therefore, many were surprised when caplacizumab, the world’s
first VHH drug, was approved as a treatment for thrombotic thrombocytopenia by the
European Medicines Agency in 2018, and by the Food and Drug Administration (FDA)
in 2019 [2,3]; after that, many pharmaceutical companies turned their attention to VHH
research and development. In March 2021, in Japan, a second VHH drug, ozoralizumab,
was submitted to the Pharmaceuticals and Medical Devices Agency for approval against
rheumatoid arthritis.
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Although several scaffolds, such as affibodies [4] and DARPins [5], have been studied
for a long time as next-generation biologics, only low-molecular-weight antibody single-
chain fragments (scFv) were eventually applied to bispecific T cell engager (BiTE®) [6] and
chimeric antigen receptor T cells (CAR-T) [7] modalities in cancer therapy. However, they
have not shown enough impact to cause a paradigm shift in the antibody drug market.

It has been revealed that VHH is a particularly successful scaffold as a drug-discovery
molecule [8]. High affinity and specificity, comparable to conventional antibodies, low
molecular weight, and various physicochemical properties, such as structure and ther-
mal stabilities, are suitable for developing biologics, intrabody application, and efficient
production in a microbial host.

The most attractive modality is bispecific antibodies that bind to different targets
simultaneously. Future biopharmaceuticals require a multi-paratopic characteristic that
binds to multiple sites on the same target. However, it is difficult to construct multi-
paratopic antibodies due to their molecular size. Alternatively, VHHs are small-sized
(~14 kDa) with high stability (Tm up to 90 ◦C) [9], are easy to design, and construct
multi-paratopic molecules which simultaneously bind to different epitopes on the same
target that will significantly enhance affinity and specificity and shows multi-functional
activities [10]. Indeed, most VHHs currently under clinical development have a multi-
paratopic structure [11].

Although camelid VHHs were suspected to be immunogenic in humans, the human-
ization of those with high homology (about 80%) with human VH family 3 is thought to
not be troublesome [12]. Their short plasma half-life (about 40 min, due to renal excretion)
is of concern, but technology that prolongs their plasma half-life has already been applied
in clinical practice [13].

VHHs are conventionally obtained by immunizing camelids such as llamas and al-
pacas with the target protein, but this method is time-consuming, the outcome is often
unpredictable depending on the target, and animal use is increasingly being restricted,
especially in the European Union [14]. To obtain VHHs faster and more efficiently, VHH li-
braries have been established and screened for binders by phage and yeast displays [15–19].
However, the diversity of cell-based systems is restricted by limited transformation ef-
ficiency (typically up to 108–9). Conversely, in vitro cell-free approaches, such as cDNA
display [20], mRNA display [21,22], and ribosome display [23], have been developed with
high diversity (1013–15) and are used for VHH screening. The cDNA display method was
evaluated as the most robust screening performance [24]. A synthetic VHH library, in which
three complementarity-determining regions (CDRs) were randomized, was constructed,
and several VHHs against survivin were obtained from the VHH library using cDNA
display screening, indicating that the cDNA display method could be used to functionally
screen synthetic VHHs [25]. Additionally, Hidayah et al. also reported the construction of a
semisynthetic human VHH library [26,27]. In that study, CDRs were randomized based
on the human antibody VH3-23 DP-47. These artificial synthetic libraries worked well to
obtain binders for the antigens. However, the performance of that library is still unclear,
and there is no certainty that the library can reproduce the characteristics of camelid VHHs.

Here, we report a humanized artificial synthetic VHH library that retains the structural
features contributing to the paratope formation on the camelid VHHs. We analyzed
330 VHH crystal structures registered in the Protein Data Bank (PDB), obtained the features
of each paratope on camelid VHH, and then classified the CDR3 structures into three types;
Upright, Roll, and Half-Roll. Based on these analyses, four sub-libraries were constructed
and designated, according to the structure type, as Upright 6, Upright 12, Roll 12, and Roll 15.
The numbers in the name indicate the number of amino acid residues in the CDR3s. To
minimize heterogeneity in the development of biologics, we reduced the frequency of
the appearance of amino acids susceptible to any modification and the amino acids that
may affect the structure, such as cysteine, methionine, and proline. For pharmaceutical
purposes, the FRs were humanized according to the human/humanized sequences from,
for example, DP-47. This library has the camelid structural features of paratope, humanized
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FRs, and optimized amino acid sequences in CDR3 to reduce a possible heterogeneity and
was named by the PharmaLogical library.

Next, to validate the library performance, we conducted VHH screenings against liver
cancer antigen glypican-3 (GPC3) [28] and breast cancer antigen HER2 [29] using cDNA
display technology. Consequently, various VHHs with affinities from 10 pM to 100 nM
were rapidly isolated for both antigens. Furthermore, molecular dynamics simulations of
isolated VHHs from the sub-libraries confirmed that the CDR3s of the library certainly take
the expected types (i.e., Upright and Roll) as their stable structures. These data indicated that
our synthetic library reproduces the structural properties of the camelid VHHs. Therefore,
our PharmaLogical library is useful for drug discovery to obtain VHHs with the original
camelid antigen-binding properties.

2. Materials and Methods
2.1. Creation of Structural Classification Data

The structural information on antibodies was obtained from the SAbDab database
(http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/ (accessed on 20 June 2021)),
which contains all antibody structures available in the PDB [30]. We extracted the VHH
data and human VH data from this database according to the following criteria:

1. Chain IDs for heavy chains included, but light chains IDs not included;
2. Tertiary structures determined using X-ray crystallography with a resolution better

than 2.8 Å;
3. Exclude structures in a complex with a hapten-antigen.

Criteria for human VH data:

1. Chain IDs for both heavy and light chains;
2. Tertiary structures determined using X-ray crystallography with a resolution better

than 2.8 Å;
3. Heavy and light antibody chains were both of the species homo sapiens;
4. Exclude structures in a complex with a hapten-antigen.

The amino acid sequences of each chain were derived from the SEQRES records in the
PDB files. The residue numbers were renumbered automatically by the Kabat numbering
scheme, using the ANARCI tool [31] (http://opig.stats.ox.ac.uk/webapps/newsabdab/
sabpred/anarci/ (accessed on 31 May 2021)). The residue number was used to identify the
variable domain region and the CDR. Clustering of variable domain region, based on these
amino acid sequences, was conducted using CD-HIT (http://weizhong-lab.ucsd.edu/cd-
hit/ (version 4.8.1, accessed on 31 May 2021)) to eliminate redundancies by removing
perfect matches for which the % id was 100% [32]. Data curation resulted in a VHH dataset
of 330 and a human VH dataset of 926.

2.2. VHH and Human VH Datasets

The structure of CDR3 was classified into three groups (Upright, Roll, and Half-Roll)
according to the structural feature using the following index based on Shirai [33] and
Gray [34] (the classification does not apply to short CDR3s less than five amino acids. For
those short CDR3s, the structures were visually classified from the X-ray structures):

1. Distance between Cα atoms: distance between the H46 residue and the (n −5)th
residue, with H102 (endpoint of CDR3) as the (n)th residue;

2. Pseudo-dihedral angle (θbase): dihedral angle consisting of the four Cα atoms of the
(n +1)th, (n)th, (n −1)th, and (n −2)th residues, with H102 (the endpoint of CDR3) as
the (n)th residue.

2.3. Design of PharmaLogical Library

First, it was necessary to set the boundary between CDRs and FRs. We used the Kabat
numbering rule [35] and structural classifications from Chothia [36]. Consequently, they

http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/anarci/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/anarci/
http://weizhong-lab.ucsd.edu/cd-hit/
http://weizhong-lab.ucsd.edu/cd-hit/
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were designated as FR1 (H1–H25), CDR1 (H26–H35), FR2 (H36–H49), CDR2 (H50–H65),
FR3 (H66–H94), CDR3 (H95–H102), and FR4 (H103–H113).

Humanized FRs for each Upright and Roll type are designed based on the human
framework sequence IGHV3-23 * 01 (DP-47), and VHHs on the market or under clinical
development. We carefully determined the Vernier zone, which is the framework region
interacting with the CDRs, based on the structural data of the VHHs. Additionally, the amino
acid sequences of the FRs, especially FR2, were specialized for each Upright and Roll type.

Four sub-libraries were designed based on the features of the CDR3 structures, and
named Upright 6, Upright 12, Roll 12, and Roll 15. CDR2, with 17 amino acid residues,
prefers to form the Roll type, whereas CDR2, with 16 amino acid residues, prefers to form
the Upright type. For CDR1, 150 varieties of amino acid sequences were selected; for CDR2,
69 and 71 varieties of sequences were selected in the Roll and Upright libraries, respectively.
Alternatively, CDR3s were randomly designed with 17 amino acid residues, excluding
methionine, proline, and cysteine. Finally, the CDR1s, CDR2s, and CDR3s were combined
with humanized FRs.

2.4. Library Construction

First, we synthesized a DNA fragment encoding the FR1 including the 5′ UTR, the FR3
including a restriction enzyme BtgZI site at the 3′ terminus, and a DNA fragment encoding
the FR4 including a His tag sequence and the 3′ UTR (Eurofins Genomics Inc., Eurofins
Scientific SE, Luxembourg, Luxembourg). Next, 150 oligonucleotides, including CDR1, FR2,
and a restriction enzyme BsmBI site at the 3′ terminus, were synthesized. In this construct,
two types of oligonucleotides were prepared for each Upright and Roll types. For the Upright
type, 71 oligonucleotides, including the CDR2, the FR2, and a restriction enzyme BsmBI site at
the 5′ terminus, were synthesized, and for the Roll type, 69 oligonucleotides, including CDR2,
FR2, and a restriction enzyme BsmBI site at the 5′ terminus, were synthesized (Sigma-Aldrich,
Merck KGaA, Darmstadt, Germany). One hundred fifty oligonucleotides for the CDR1,
71 for the CDR2, and 69 for the CDR2 were mixed. Finally, oligonucleotides, including
a randomized CDR3 region and a restriction enzyme BsmBI site at the 5′ terminus, were
synthesized (Ella Biotech, Fürstenfeldbruck, Germany). The randomized regions included
amino acid residues of lengths of 6, 12, or 15, and were synthesized using 17 types of trimer
phosphoramidites (excluding cysteine, methionine and proline). Notably, these 17 types of
trimer phosphoramidites were equally mixed.

Overlapping extension polymerase chain reactions (PCRs) were conducted with the
mixed oligonucleotides (FR1 and CDR1), mixed oligonucleotides 2 (CDR2 and FR3), and
mixed oligonucleotides 3 (CDR3 and FR4), 100 pmol per mixture. The extension PCRs
synthesized strands of FR1-CDR1, CDR2-FR3, and CDR3-FR4. The FR1-CDR1 and the
CDR2-FR3 were purified with AMPure XP (Beckman Coulter, Inc., Brea, CA, USA) and
digested with a restriction enzyme BsmBI (New England Biolabs, Ipswich, MA, USA). After
purification with AMPure XP, the FR1-CDR1 and the CDR2-FR3 fragments were ligated
together with T4 DNA ligase (Takara Bio Inc., Shiga, Japan) at 16 ◦C overnight. The ligated
products were purified by an 8 M urea denaturing polyacrylamide gel electrophoresis
(PAGE) and amplified by PCR using the outer primers. The amplified DNA fragments
of FR1-CDR1-FR2-CDR2-FR3 were purified. The purified products were digested with
a restriction enzyme BtgZI (New England Biolabs), and DNA fragments of CDR3-FR4
were digested with a restriction enzyme BsmBI after purification with AMPure XP. The
DNA fragments of FR1-CDR1-FR2-CDR2-FR3 and CDR3-FR4 were ligated together with
T4 DNA ligase at 16 ◦C overnight. The ligated products were purified by an 8 M urea
denaturing PAGE. The DNA library from our PharmaLogical library is composed of 5′ UTR
(T7 promoter, Shine–Dalgarno sequence), VHH genes, the His-tag region, and 3′ UTR linker
hybridization region.



Antibodies 2022, 11, 10 5 of 18

2.5. Obtaining VHHs against Target Molecules

We built a high-throughput screening platform called “The Month” and conducted a
verification study using that platform. The combination of the cDNA display method and
the Corynebacterium glutamicum secretion expression system enabled the rapid isolation of
many target-binding VHHs.

2.5.1. In Vitro Selection Using cDNA Display

Each sub-library, according to DNA form Upright 6, Upright 12, Roll 12, and Roll 15, was
transcribed by T7 RNA polymerase in a RiboMAX Express Large Scale RNA Production System
(Promega Corp., Madison, WI, USA). The RNA products were purified with RNAClean
XP (Beckman Coulter, Brea, CA, USA), and then hybridized with a puromycin linker
using cnvK. The cnvK puromycin linkers were individually photo-cross-linked with the
3′-terminal region of the mRNA by ultraviolet light at 365 nm for 30 s.

The photo-cross-linked products were mixed and translated in vitro using PUREflex1.0
(GeneFrontier Corporation, Chiba, Japan) at 30 ◦C for 30 min. KCl and MgCl2 were
added to the reaction mixture at a final concentration of 800 and 80 mM, respectively, and
incubated at 37 ◦C for 60 min, and then ethylenediaminetetraacetic acid (EDTA) was added
to the reaction mixture at a final concentration of 100 mM, and the mixture was further
incubated at 4 ◦C for 15 min. A 2× binding buffer (20 mM Tris-HCl pH 7.5, 2 M NaCl,
25 mM EDTA, 0.1% Tween20) was added to the translation reaction mixture. The reaction
mixture was incubated with streptavidin-coated magnetic beads (SA beads, DynabeadsTM,
MyOneTM Streptavidin C1; Thermo Fisher Scientific, Inc., Waltham, MA, USA) at 25 ◦C for
60 min to immobilize on SA beads. After washing with 1× binding buffer three times,
the immobilized library was reverse-transcribed by GeneAce Reverse Transcriptase (Nippon
Gene, 200 U/µL GeneAce Reverse Transcriptase in 200 µL buffer) at 42 ◦C for 30 min. After
washing twice with a His-tag wash buffer (20 mM sodium phosphate pH 7.4, 0.5 M NaCl,
5 mM imidazole, 0.05% Tween20), the His-tag wash buffer with 5 U/µL RNase T1 (Thermo
Fisher) was mixed with the SA beads, and the mixture was incubated at 37 ◦C for 15 min
to release the cDNA display molecules from the SA beads. The supernatant containing
the cDNA display was captured with Ni-NTA magnetic beads (His Mag Sepharose Ni®,
Cytiva, Marlborough, MA, USA) at 25 ◦C for 60 min. The Ni-NTA magnetic beads were
then collected and washed twice with a His-tag wash buffer. The cDNA display molecules
bound to the beads were eluted by incubation at 25 ◦C for 10 min in a His-tag elution buffer
(20 mM sodium phosphate pH 7.4, 0.5 M NaCl, 250 mM imidazole, 0.05% Tween20) at
25 ◦C for 15 min.

At the first round of selection, cDNA display libraries were mixed with 100 pmol
biotinylated HER2 or 100 pmol biotinylated GPC3, and incubated at 4 ◦C for 30 min. Then,
240 µL SA beads was added to the reaction mixtures and incubated at 4 ◦C for 30 min to
immobilize the cDNA display molecules bound to the biotinylated target proteins. The
supernatant was removed, and the beads were washed three times with PBS-T. The cDNA
display molecules remaining on the beads were eluted and purified by AMPure XP. The
purified products were subjected to PCR amplification. The amplified DNAs were purified
and used for the next round of selection. For the second and third rounds of selection, a
smaller amount of mRNA linker (12.5 pmol and 6.25 pmol, respectively), and a smaller
amount of biotinylated target proteins (10 pmol HER2 and GPC3) were used.

2.5.2. Preparation of Selected VHHs

After selection, cDNA fragments from the selected clones were PCR-amplified using
specific primers, including restriction enzymes BamHI and SfiI restriction enzyme sites,
and transferred into an expression vector for Corynebacterium glutamicum. Approximately
200 transformants were picked up and these were cultured in a protein-expression medium
at 25 ◦C for 72 h. The culture supernatants were centrifuged and filtered through a 0. 22-µm
membrane filter.
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2.5.3. Primary Binding Assay by Biolayer Interferometry Analysis

VHHs with binding activity against the target molecules were determined by using a
biolayer interferometry (BLI), Octet® RED384 (Sartorius AG, Göttingen, Germany). A solution
of 70 µL was added to a 384-well black plate (Sartorius AG), and the measurements were
conducted as described below. The loading baseline was measured in kinetic buffer for
30 s. The VHHs were immobilized on a His1K biosensor. The measurement baseline was
measured in kinetic buffer for 30 s. The loaded sensors were dipped into 400 nM HER2-
Fc (ACROBiosystems, Newark, DE, USA) and GPC3-Fc (ACROBiosystems) to measure a
100-s specific binding at the association step. The dissociation was obtained by dipping the
biosensors one more time into the kinetic buffer for 100 s. VHH clones with a binding response
of >0.1 were identified as a binder, and sequence analysis was conducted on those clones.

2.6. VHH Expression and Purification

The VHH candidates identified by screening were expressed in Corynebacterium, and
purified by His tag at the C-terminus of VHHs. The bacterial cells were cultured in CM2G
medium at 30 ◦C overnight. The cells were inoculated in a protein-expression medium
and cultured at 25 ◦C for 72 h. The culture supernatants obtained by centrifugation were
filtrated by a 0.22-µm membrane filter and subjected to Ni-NTA HP (FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan) in a spin-column. The resin was washed with the
Tris buffer (50 mM Tris-HCl pH7.5, 300 mM NaCl) containing 30 mM Imidazole, and then
VHHs were eluted with the Tris buffer containing 500 mM Imidazole.

2.7. Binding Affinity Analysis

Binding affinities of VHHs were determined using BLI, Octet® RED384. A solution
of 70 µL was added to a 384-well black plateand the measurements were performed as
described below. The loading baseline was measured in the kinetic buffer for 30 s. The
purified VHHs with C-terminal His tag were immobilized on a His1K biosensor. The
measurement baseline was measured in the kinetic buffer for 30 s. The loaded sensors were
dipped into two-fold serial dilutions from 100 nM of the HER2-Fc and GPC3-Fc to measure
a 120-s specific binding at the association step. The dissociation was obtained by dipping
the biosensors into the kinetic buffer for 300 s. The data were analyzed using ForteBio Octet
Date Analysis HT 11.1.2.48, and kinetic parameters were determined.

2.8. Thermal Stability Analysis

The purified VHHs were analyzed for their thermal stability using differential scanning
fluorimetry (DSF) and static light-scattering (SLS) assays. A heating rate of 1 ◦C/min was
monitored from 25 to 95 ◦C. The SLS assays were measured at 266 nm. Additionally, Tm and
Tagg from the DSF assay were analyzed and calculated using UNCLE Analysis Software
(Unchained Labs, Pleasanton, CA, USA).

2.9. Cell Culture

SK-BR-3 cells were purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA) and maintained in McCoy’s 5A (Gibco, Grand Island, NE, USA)
medium, supplemented with 10% fetal bovine serum (FBS, Sigma–Aldrich, Merck KgaA,
Darmstadt, Germany), penicillin (100 U/mL), and streptomycin (0.1 mg/mL) in a humid-
ified 5% CO2 incubator. HepG2 cells were purchased from the Japanese Collection of
Research Bioresources Cell Bank (JCRB, Osaka, Japan) and maintained in Dulbecco’s Mod-
ified Eagle’s Medium (DMEM; Sigma–Aldrich), supplemented with 10% FBS, penicillin
(100 U/mL), and streptomycin (0.1 mg/mL) in a humidified 5% CO2 incubator.

2.10. Flow Cytometry

The purified VHHs were analyzed for cell binding using a flow cytometer. Cells were
cultured in dishes at 80% confluence and then harvested with 5 mM EDTA in PBS. Collected
cell samples were washed with 1% BSA/PBS, resuspended with the VHH solution in 1%
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BSA/PBS (1:100 dilution), and incubated at 4 ◦C for 1 h. After being washed three times
with 1% BSA/PBS, the cells were incubated with an anti-His-tag antibody conjugated with
Alexa Fluor 488 (1:1000 dilution, Medical & Biological Laboratory, Tokyo, Japan) at 4 ◦C for
1 h. After incubation with the detection antibody, cells were washed with 1% BSA/PBS,
resuspended with 1% BSA/PBS, and subjected to a flow cytometry (FCM) analysis (SH800;
Sony, Tokyo, Japan).

2.11. Molecular Dynamics Simulations of VHHs

Although our libraries were carefully designed on the basis of the bioinformatics
explained above, we needed to check whether the VHHs in the libraries had the expected
CDR3 structures. To verify whether the VHHs had the expected CDR3 structural types,
we conducted molecular dynamics (MD) simulations of representative sequences from
the libraries. The initial structure was created by homology modeling, using the SWISS-
MODEL web server [37]. Generally, loop structures such as CDR3 require a very long
simulation time due to their slow relaxation, which is difficult to access with conventional
MD simulations. Thus, to efficiently sample CDR3 structures, we used the generalized
replica-exchange solute-tempering method (gREST) [38], a variant of replica-exchange
MD [39]. In the replica-exchange MD, temperatures of whole replicated systems are
exchanged to accelerate structural sampling. In the gREST, we could select a local region of
the molecule and a part of the potential energy terms for temperature exchange. We found
that the CDR3 structure can be efficiently sampled when selecting the CDR3 region and
its dihedral angle potential energy terms for the temperature exchange (Higashida and
Matsunaga, submitted). Following this procedure, we conducted 100-ns gREST simulations
with eight replicas (i.e., 800 ns aggregation time). Finally, we obtained an ensemble of the
VHH structure at 1 atm and 300 K, which corresponds to the lowest temperature of the
eight replicas. The simulations were conducted with GENESIS software [40] using the
CHARMM36 force field [41] and the TIP3P water molecule. Electrostatic interactions were
treated using the smoothed particle mesh Ewald (S-PME) [42], and the bonds involving
hydrogen atoms were constrained using SHAKE [43] and SETTLE [44] algorithms.

3. Results
3.1. Classification of CDR3 Structure

To analyze the structural features of camelid VHH, we created structural datasets
of VHH and human VH. First, we obtained the structural data of VHH and human VH
available in PDB, and then extracted the data with a resolution better than 2.8 Å by X-ray
crystallography and excluding the perfect match sequences. As a result, we constructed a
dataset of 330 sequences of VHH and a dataset of 926 sequences of human VH.

We analyzed the constructed VHH structure dataset and found that the structure of
the CDR3 loop can be roughly classified into three groups. Based on the characteristics
of the CDR3 structure, each classification was named “Upright,” “Half-Roll,” and “Roll”
(Figure 1A). In the Upright type, the CDR3 stands upright and the FR2 is exposed to the
outside. This Upright loop of VHH stab into an epitope of the target antigen, or binds to
the target with FR2. The Roll type of VHHs has the formation that the CDR3 loop covers
the FR2 region. For this formation, large hydrophobic residues (H37, H44, H45, H47) are
directly related. Half-roll is categorized as the intermediate CDR3 type between Roll and
Upright. Compared with other types of CDR3, this type does not have a clear propensity in
its sequence. Next, for those CDR3 loop structure classifications (Upright, Half-Roll, and
Roll), the classification was defined by combining the CDR3 classification methods in past
studies [32,33]. Figure 1B shows a scatter plot of the pseudo-dihedral angles of CDR3
C-terminal and the distances between the Cα of the CDR3 loop and the closest residue in
FR2 for the structures of VHH. The structures with pseudo-dihedral angles more than 140◦,
distances more than 15 Å, and an elongated-type CDR3 conformation were classified as
Upright (pink dots). Structures with a pseudo-dihedral angle less than 140◦, distances less
than 10 Å, and a CDR3 conformation with a curved shape relative to FR2 were classified as
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Roll (green dots). The group of VHHs that do not belong to Upright and Roll was classified
as Half-Roll (blue dots) because the CDR3 conformation was intermediate between Upright
and Roll. We determined the regions of CDR3 in human VH and classified the structures by
applying the same scheme as we did for VHH. In human VH, there were no Roll types and
few Upright types for CDR3 (Figure 1C). Although most of the structures were Half-Roll
type, few showed pseudo-dihedral angles more than 140◦ and less than 15 Å in distance.
The presence of a light chain is a steric hindrance and will prevent folding, as with the
Roll-type structures of CDR3. The above suggests that Upright and Roll are unique CDR3
structures of VHH that are rarely found in human VH.
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Figure 1. Classification of VHHs by CDR3 loop structures. (A) The structure of VHHs is classified
into three types based on the conformation of CDR3; Upright, Half-Roll and Roll (PDB ID: 5j1s, 6ru3,
and 2p45). (B,C) The distances between Cα atoms of CDR3 loop and FR2 (distance between H46
residue and (n − 5)th residue with H102 as (n)th residue) and pseudo-dihedral angles of CDR3
C-terminal (dihedral angle consisting of the four Cα atoms of the (n + 1)th, (n)th, (n − 1)th, and
(n − 2)th residues, with H102 as the (n)th residue) were calculated from structures and the value was
plotted. (B) The structures of CDR3 were classified into the three groups according to type (Upright,
Roll, and Half-roll) based on the distance and pseudo-dihedral angle. The VHHs belonging in the
Upright group (pink dots) had a distance of 15Å or more and an angle of 140◦ to 360◦, the VHHs in
the Roll group (green dots) had a distance of 10Å or more and an angle of less than 140◦, and the
other VHHs were classified as the Half-Roll type (blue dots). (C) The CDR3 of human VH (gray dots)
from a conventional VH–VL complex and VHH (yellow dots) are shown.

Figure 2A,B shows a histogram of the length of CDR3 in the three structure types of
VHHs and human VH from the PDB. In VHH, CDR3s with 12 or more amino acids tend to
form a Roll-type structure. Alternatively, shorter a CDR3 tends to form an Upright confor-
mation in both VHH and human VH. The Half-Roll type is widely distributed throughout
and independently forms the length of the CDR3. Moreover, CDR3s with 16 or more amino
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acids tend to have a cysteine residue in the CDR3 that forms a disulfide bond with a cysteine
in the CDR1 or CDR2 to stabilize the CDR3 structure. This additional disulfide bond is
unwanted in the process development of biologics. Therefore, the maximum length of
CDR3 was determined to be 15 amino acids. Furthermore, we found a correlation between
CDR2 length and CDR3 structural classification. A total of 87% of the Roll-type VHHs in
the dataset had 17 amino acid CDR2s, and 62% of the Upright-type VHHs had 16 amino
acid CDR2s. This suggests that the length of CDR2 affects the structure determination of
the CDR3 loop.
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from the alpaca germline and the alpaca sequence data obtained in our laboratory. In this 
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Figure 2. Distribution and structural classification of CDR3 loop lengths of (A) VHH and (B) Human
VH. Many VHHs with CDR3 lengths of 12 amino acids or more belong to Roll (green), and VHHs or
human VHs with short CDR3 tend to belong to Upright (purple). Those belonging to the Half-Roll
group (blue) are widely distributed. (C) Comparison of amino acid residues between Upright and Roll
types involved in the paratope and surroundings. Amino acid residues of VHH close to the antigen
are highlighted in red in the crystallography of VHH–antigen complexes listed in PDB. In particular,
the FR2 of the Upright type (highlighted in yellow) shows that many amino acid residues directly
contribute to the paratope formation.

Detailed information on the paratope structure was obtained from the X-ray crys-
tallographic analysis of VHHs bound to the antigen (Figure 2C). Initially, we precisely
defined CDRs using the Kabat numbering scheme. From the paratope analysis, Kabat
numbering of CDR2 (H50–H65) and CDR3 (H95–H102) contained a sufficient region of
the paratope. However, since the paratope of the CDR1 region is wider than that defined
by the Kabat numbering system, we defined CDR1 (H26–H35) as the combined region of
Kabat numbering (H31–H35) and the Chothia-aligned CDR1 (H26–H32). In the Upright
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type, FR2 plays a major role in paratope formation. The FR2 interacts with the L chain
in a conventional VL–VH format, but is exposed in the VHH with an Upright CDR3 loop.
Alternatively, in the Roll type, the FR2 and CDR3 are close to each other, stabilize as a Roll
structure, and the entire CDR3 recognizes the antigen.

3.2. Construction of the PharmaLogical Library

We designed a rational artificial library of VHHs based on the analysis of the paratope,
residue length, and structural type of CDR3, and, based on a huge number of camelid
VHH amino acid sequences accumulated in our laboratory, the frequency of the appearance
of all amino acid residues on VHH was analyzed. Four sub-libraries were designed and
designated Upright 6, Upright 12, Roll 12, and Roll 15 according to the structure type and
the length of CDR3 loops. First, the humanization framework area of the VHH library was
designed for the Upright and Roll types, respectively. The humanized framework sequence
was determined based on the human framework sequence IGHV3-23 * 01 (DP-47) and the
humanized sequence of VHH currently on the market (Figure 3A). Because humanization
often reduces the binding activity, it is advantageous to have already-humanized VHHs in
the library. The CDR3 of the synthetic library was designed to have 6 and 12 amino acids in
the Upright type sub-library, and 12 and 15 amino acids in the Roll type sub-library, based on
the analysis of the structural classification and length distribution of CDR3. Furthermore,
because some amino acids become modified during the development process, our library
was designated to reduce the frequency of appearance of potentially risky amino acids
in CDR3. For CDR1 and CDR2, sequences were selected from the alpaca germline and
the alpaca sequence data obtained in our laboratory. In this artificial VHH library, CDR1
consists of 150 sequences, and CDR2 consists of 71 sequences of 16 amino acids in the
Upright type and 69 sequences of 17 amino acids in the Roll type. Importantly, the structural
properties of camelid VHH were kept in the design of the CDRs.

Based on the library design, four types of sub-libraries, Upright 6, Upright 12, Roll 12,
and Roll 15, were constructed. Each constructed library had a diversity of more than 1013

and was synthesized by adding a UTR sequence for the cDNA display method (Figure 3B).
The constructed library was analyzed by next-generation sequencing (NGS) and verified.
As a result of NGS analysis, the four sub-libraries had the sequences as designed, and the
mixing ratio of the amino acids of CDR3 was almost the same as designed.

3.3. Validation of PharmaLogical Library

The combination of the PharmaLogical library with the most current cDNA robust
screening method showed robust VHH screening. Various VHHs were quickly obtained
from the cDNA display based on our VHH screening platform, “The Month” (Figure 4A).
A mixture of the four types of sub-libraries from the PharmaLogical library was used for
screening against human HER2 and human GPC3. In both validation studies, various
binders with high affinity were efficiently isolated for each antigen within a month’s time.

Figure 4B shows the outcome of validation studies using the PharmaLogical library
with our VHH screening platform “The Month”. It was confirmed that a wide variety of
VHHs was obtained by combining the synthetic VHH library and our VHH screening
platform based on the cDNA display method. For GPC3, 104 clones were isolated and,
among them, 84 were unique clones. For HER2, 52 clones were obtained and 38 were
unique clones. Very interestingly, for HER2, 70% of clones were derived from the Upright 12
sub-library. The Upright VHHs are most likely to bind to the epitopes, such as crevices and
clefts on the antigen, to which conventional antibodies cannot bind. Therefore, the upright
VHHs are expected to have new binding characteristics compared to those of conventional
antibodies. For GPC3, 50% were from the Upright 6 and Upright 12 sub-libraries.
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Each unique clone was expressed in Corynebacterium glutamicum, which secrete recombi-
nant protein into a culture supernatant. The supernatants were filtered through a 0.22-µm
membrane filter, and subjected to analysis of KD, Tm, and Tagg by BLI (Octet RED 384, Pall
Life Sciences) and the UNCLE system (Uncle Analysis Software, Unchained Labs, Pleasanton,
CA, USA), respectively. As shown in Figure 5A, many VHHs obtained from the synthetic
VHH library showed high Tm and Tagg values. Moreover, a Tm–Tagg plot shows a good
correlation, especially in GPC3. Binding affinity analysis confirmed that VHHs obtained
from the synthetic VHH library have a binding affinity of approximately 107 to 10−12 M for
each antigen (Figure 5B). A KD–Tm plot is very useful for selecting candidates for further
development (KD < 1.0 × 10−9 and Tm > 60 ◦C) (Figure 5B, red-colored box).
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Figure 4. (A) Schematic of the screening flow using “The Month” platform. The cDNA display
selection strategy is used to isolate VHHs that bind to target molecules from the PharmaLogical library.
The PharmaLogical Library, with > 1.0 × 1013 diversity, was made into a cDNA display molecule
with genotype and phenotype correspondence. Only the cDNA display molecules that bind to
the target protein are immobilized on the magnetic bead via the target protein, and the unbound
cDNA display molecules were washed away. The DNA of the recovered cDNA display molecule
was amplified by PCR, and the PCR product was used as a template in the next cycle. Three-cycle
selection was conducted with these series of flows as one cycle. The DNA Library subjected to the
selection cycle was cloned into a protein-expression vector, and each clone was expressed. VHHs in
the culture supernatant were collected and the binder was identified using Octet384. (B) The number
of binding VHHs detected as hit clones in the primary binding assay is shown. Unique VHHs are
clones detected as hit clones but that do not have duplicate sequences. Unique VHHs were derived
from four libraries: Upright 6, Upright 12, Roll 12, and Roll 15. VHH clones whose origin could not be
determined due to mutations in the screening process were designated other.

Flow cytometry (FCM) analysis confirmed a cell-binding activity of VHHs against
target antigens. When screening VHHs for peripheral membrane proteins, soluble recom-
binant proteins were usually used, and thus, sometimes isolated VHHs cannot bind to
the antigen on living cells. For clinical applications, therefore, an FCM evaluation needs
to select VHHs that bind to target molecules on living cells. Several VHHs isolated by
screening were analyzed for cell-binding to SK-BR-3 (highly expressed HER2) and HepG2
(highly expressed GPC3). In this FCM analysis, cell-binding was detected by recognition of
the His tag at the C-terminus of VHHs by the Anti-His-tag mAbs conjugated with Alexa
Fluor 488. As shown in Figure 6, some VHHs for both GPC3 and HER2 bind to their
target liver cancer cell hepG2 and breast cancer cell SK-BR-3, respectively. Therefore, it was
confirmed that VHHs obtained from this screening platform using recombinant proteins
also showed the binding ability to target molecules on the cell surface.
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Figure 6. FCM analysis of cell-binding on SK-BR-3 (highly expressed HER2) and HepG2 (highly
expressed GPC3). Anti-His-tag mAbs conjugated with Alexa Fluor 488 were used as the secondary
antibody, cell binding was detected by the secondary antibody recognizing the C-terminal His tag of
VHHs. Negative control (NC) was stained with secondary antibody only.

3.4. Confirmation of Reproduction of Paratopes by Molecular Dynamics Simulation

To verify whether the VHHs have the expected CDR3 structural types, we conducted
MD simulations of representative sequences from the sub-libraries. Figure 7 shows the
results of gREST simulations of the four representative VHHs from sub-libraries Upright 6,
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Upright 12, Roll 12, and Roll 15, respectively. The obtained structures were projected onto
the same distance and pseudo-angle space as the bioinformatics analysis. It was confirmed
that the structural ensembles of the VHHs were distributed in the expected Upright or
Roll regions defined in the bioinformatics analysis. Particularly, clones from the Upright
6, Roll 12, and Roll 15 are spatially located in typical Upright and Roll regions. Although a
clone from Upright 12 showed a broad distribution which included the Half-Roll region as a
metastable state, most stable states correspond to the upright region. In fact, the average
value of Upright 12 (black diamonds) in this 2D space located in the typical upright region
was confirmed by the 3D structural view.
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4. Discussion

There are several approaches to the construction of human VHH libraries. Binders
for the COVID-19 spike protein were isolated from a human VHH library, indicating that
the human VH could be used in the VHH format [45]. However, it is unclear whether
human VH reproduces the structural properties of camelid CDR3 that make a paratope in
a single-domain antibody. A comparison between VHH and human VH revealed that the
camelid VHH has three types of CDR3 structures, whereas for human VH, the Half-Roll
type is dominant. This is due to the presence of VL in the conventional antibody and may
influence the paratope formation. Since the VHH in our PharmaLogical library retains the
paratope-forming ability of VHH, it is expected that the VHH will reproduce the binding
characteristics of camelid VHH. Therefore, PharmaLogical is a logical library that will greatly
contribute to antibody drug discovery.

Detailed structural data of the paratope structures were obtained from the X-ray
structural analysis of antigen-bound VHH. Compared to computer structure analysis based
on the amino acid sequence of CDR, this analyzes the state of binding to the actual antigen,
and so more accurate structure data can be obtained. We found that the VHH CDR3
produced by camelids followed three major structural pattern forms. The relationship
between CDR2 and CDR3 is particularly important, and there are two types of CDR2 with
lengths of 16 or 17 amino acid residues, which defines the possible structural patterns
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of CDR3. We believe that our artificial library that retains the expected basic structural
relationship of VHH is extremely important for reproducing various structures to take
advantage of the inherent characteristics of the CDR3 of VHH antibodies.

A synthetic library construction based on universal FRs has been reported [26,27].
However, we found that the Upright and Roll types interact structurally differently between
CDR3 and FR2, and thus, FR2 sequences need to be optimized for each type. That is, a
universal FR in the same structure type makes sense, but not for all structure types. Amino
acid residues in the FRs generally contribute to direct binding and/or a paratope formation.
As shown in Figure 2C, amino acid residues in the FR2, especially in the Upright type,
contributed to the paratope formation. Therefore, for synthetic libraries, the FR2 should be
carefully designed and introduced into the library (Figure 3A).

The usefulness of VHHs has been widely recognized in drug discovery. Not only are
the characteristics of VHHs attractive, but also the speed at which drug candidates can be
obtained using VHHs, especially in an emergency, is advantageous. Currently, the world
is amid a pandemic caused by the coronavirus disease, COVID-19. The time required for
developing therapeutic drugs against COVID-19 is a serious issue, and thus, it is expected
that VHHs that can be obtained more rapidly from the generation of mutant strains will
increase the speed of progress. Wu et al. reported that a yeast surface-display library of
synthetic VHHs (>2 × 109) provides neutralizing binders to the spike ectodomain [46]. In
addition to designing our library, we built “The Month,” a VHH-screening platform that
quickly selects development candidates by combining an artificial humanized library with
>1013 diversity and a cDNA display technology. Thus, our screening platform, named “The
Month”, is a powerful tool for a rapid response to the outbreak of coronavirus mutants.

As a model case of drug discovery, HER2 and GPC3 were subjected to a VHH drug-
discovery process. We used “The Month,” our cDNA display screening platform that allows
the selection of 50–100 positive clones and analyzes their KD, Tm, and Tagg. This process
was completed within one month, and was, thus, named “The Month.” Two-dimensional
plotting with some parameters can be created. For example, when plotting Tm against Tagg,
a high correlation is obtained in GPC3 (Figure 5A). A correlation also can be seen in HER2.
In other words, the selection of a clone population with high Tm and Tagg, which determines
protein stability, as a development candidate is confirmed. Additionally, when viewed in
terms of KD and Tm, development candidate VHHs with high affinity and high stability can
be selected. Determining the window setting (in this study, KD < 1.0 × 10−9 M, Tm > 65 ◦C)
quickly narrows down the number of candidates for development. After that, various cell
assays can be applied to further obtain candidates to develop. It is useful to quickly select
candidates by using “The Month” and two-dimensional plot analysis. The purpose of this
FACS evaluation study is to evaluate whether VHHs obtained using a soluble antigen can
bind firmly to the true target membrane-binding antigen. Therefore, control cells are not
always necessary. Of course, it is very important to verify the characteristics of VHH in
clinical development. At the next step, therefore, we will investigate the cross-reactivity
of VHHs to wide variety of cells. This is an important process that forms the basis of
safety assessments in animal and human clinical trials. We will report the results of cellular
specificity in the near future.

The most important feature of the PharmaLogical library is that it reproduces the
paratope formation of camelid VHHs. That is, a selected VHH should reflect the concept
of the structural design of the library. To confirm this, the CDR3 structures of selected
VHHs were subjected to computer modeling, which is less time-consuming than crystal
structure analysis. As expected, the CDR3 structure of the clone derived from the Roll
sub-libraries clearly showed the Roll type structure. Therefore, our PharmaLogical library
is guaranteed to be composed of the designed structural subtypes. Many VHH libraries
have been reported, but our PharmaLogical library is the first library to deploy the original
structural characteristics for camelid VHHs. Reproducing the original structural properties
will lead to more success in the drug-discovery application of VHHs.
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Furthermore, Zimmermann et al. also reported a synthetic VHH library [47]. The idea
of this paper is similar in that it, as our research does, features a structure-based design.
However, they specialize for complex membrane proteins such as transporters and ion
channels and focus on epitope structure. On the other hand, we are trying to reproduce the
binding properties of camelid antibodies in an artificial humanized library for any kind of
targets, focusing on paratope structure. There are structural relationships between epitopes
and paratopes, and thus, we expect that this interesting structural relationship could be
useful in a structure-based drug design.

5. Conclusions

The library we logically designed based on structural analysis makes it possible
to secure VHHs that reproduce the attractive paratope of the camelid VHH. Currently,
although we have completed the construction of the Half-Roll type sub-libraries, we are
in the process of undergoing validation. Once this is complete, we will be able to provide
an artificial library that covers about 95% of the original camelid VHHs. PharmaLogical is
an in vitro antibody production system that completely mimics the VHH production of
an in vivo system. Furthermore, in the future, it may be useful to select the appropriate
sub-library according to the antigen.
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