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Abstract: Partition of unity finite element method with plane wave enrichment (PW-FEM) uses
a shape function with a set of plane waves propagating in various directions. For room acoustic
simulations in a frequency domain, PW-FEM can be an efficient wave-based prediction method, but
its practical applications and especially its robustness must be studied further. This study elucidates
PW-FEM robustness via 2D real-scale office room problems including rib-type acoustic diffusers. We
also demonstrate PW-FEM performance using a sparse direct solver and a high-order Gauss–Legendre
rule with a recently developed rule for ascertaining the number of integration points against the
classical linear and quadratic FEMs. Numerical experiments investigating mesh size and room
geometrical complexity effects on the robustness of PW-FEM demonstrated that PW-FEM becomes
more robust at wide bands when using a mesh in which the maximum element size maintains a
comparable value to the wavelength of the upper-limit frequency. Moreover, PW-FEM becomes
unstable with lower spatial resolution mesh, especially for rooms with complex shape. Comparisons
of accuracies and computational costs of linear and quadratic FEM revealed that PW-FEM requires
twice the computational time of the quadratic FEM with a mesh having spatial resolution of six
elements per wavelength, but it is highly accurate at wide bands with lower memory and with
markedly fewer degrees of freedom. As an additional benefit of PW-FEM, the impulse response
waveform of quadratic FEM in a time domain was found to deteriorate over time, but the PW-FEM
waveform can maintain accurate waveforms over a long time.

Keywords: acoustic simulation; architectural acoustics; finite element method; wave-based modeling

1. Introduction
1.1. Background

Numerical simulations of room acoustics are a useful tool for designing a comfort-
able sound environment in various architectural spaces such as offices and classrooms.
Geometrical acoustics simulation methods [1] such as the ray tracing method are practical
and powerful room acoustics simulation tools with low computational resources. How-
ever, they use a simplified approximation of wave phenomena. Wave-based numerical
methods such as finite element methods (FEMs) can predict room acoustics accurately by
solving a wave equation numerically. The wave-based methods have a notable benefit
in modeling two major technologies for room acoustics control, i.e., the effect of sound
absorption and sound scattering can be considered more precisely. Nevertheless, they
require a high computational cost for predicting a great variety of sound fields of real-scale
architectural spaces with complex boundary conditions at wide ranges of audible frequen-
cies. They entail fine discretization in time and space to maintain a discretization error,
known as the dispersion error, within an acceptable level. In general, the classical linear
and quadratic FEMs respectively require spatial discretization of at least 10 and 3 elements
per wavelength as a rule of thumb for spatial discretization. These discretization rules,
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which increase the degrees of freedom in FE meshes, make the room acoustics problem
considerably expensive. However, with recent developments in computer technology and
efficient solvers, the applicable range of wave-based numerical methods is progressing
rapidly for both frequency-domain and time-domain room acoustic simulations [2–5].
For frequency-domain room acoustics simulation, FEM [6–9] and the boundary element
method [10,11] are standard choices because they can model various sound absorbers more
easily than time-domain methods can. In contrast, with the capability of obtaining the
impulse response with a single computational run, the following time-domain room acous-
tic simulations have been developed: the finite-difference time-domain method [12–16],
the time-domain FEM [3,17–19], the finite-volume time-domain method [20,21], the pseu-
dospectral time-domain method [22,23], the discontinuous Galerkin FEM [24–27], and the
adaptive rectangular decomposition method [28,29]. However, acoustics simulation in a
real-sized room at high frequencies must address analytical models with vast degrees of
freedom (DOFs). Consequently, developing more efficient methods has a marked effect on
enhancing of their applicability further in practical room acoustics design.

As such a candidate, the authors expect that the partition of unity FEM [30–42] with
plane-wave enrichment (PW-FEM) can be an effective method from the perspectives of
accuracy, efficiency, ease of mesh generation, and compatibility with existing FEM codes.
Actually, PW-FEM is extendable from any existing FEM code, i.e., the method is inherently
helpful for the performance enhancement of existing FEM codes. In the PW-FEM and
relevant methods such as the partition of unity isogeometric analysis, the sound pressure at
each node is represented by a sum of plane waves propagating in various directions, using a
general solution of the Helmholtz equation. With the incorporation of the plane wave func-
tion, the PW-FEM can enhance the approximation capability of sound fields [32,33,35,36].
Furthermore, using a refinement approach called q-refinement by which a set of plane
waves is added gradually at nodal points, the PW-FEM can approximate sound fields
up to high frequencies under a single coarse mesh discretized with elements of length
many times greater than the wavelength of the analyzed frequency. Consequently, the
PW-FEM can reduce the DOFs markedly compared to the classical linear FEM. Our re-
cent research [37] assessing the potential of the PW-FEM as an efficient room acoustics
solver via two room-acoustic problems showed that the DOFs’ reduction reaches at least
1/100 compared to the classical linear FEM. Furthermore, the authors proposed a new
rule for ascertaining the number of integration points in the high-order Gauss–Legendre
rule used for the construction of element matrices [40], which is known as a hotspot of
computations, and demonstrated its efficiency for wideband frequency response analysis
against the well-used existing rule. Then, the authors presented the applicability of the
PW-FEM to room acoustics simulation, including an extended reacting microperforated
panel [43] and permeable membrane [44] sound absorbers in the literature [42]. We can
also find appropriate PW-FEM formulations for predicting sound fields including porous
sound absorbers [38,39], for which porous materials are modelled with an equivalent fluid
model [45–48] and poroelastic material model [49].

However, there is still an unclear and difficult point for users in the parameter setup
on the plane-wave enrichment. That point is associated with the robustness of the PW-FEM
and becomes an error factor. At present, a well-used rule as a function of wavenumber
and element size exists for plane-wave enrichment, which includes a constant to control
accuracy. However, its robustness on the room acoustics problem remains unclear. Because
the room acoustics problems include elements of multiple sizes in FE meshes according to
the room geometry and need multi-frequency analysis, it is crucially important to find a
robust mode of adding appropriate numbers of plane waves to nodal points according to
the mesh, frequency, and room geometry. For example, one must use a PW-FE mesh that
includes both smaller and larger elements compared to the wavelength of the analyzed
frequency when a room includes acoustic diffusers for room acoustics control.
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1.2. Study Purpose

This study was conducted to investigate how the robustness of PW-FEM in multi-
frequency analysis changes according to the mesh and room geometry which are used.
Based on the results, the authors present a proposal for the mesh used to perform room
acoustics simulations efficiently with PW-FEM. This paper also includes performance
examination in terms of computational times and memory requirements against standard
linear and quadratic FEMs. The PW-FEM uses our recently developed rule for ascertaining
the number of integration points in the high-order Gauss–Legendre rule and uses a sparse
direct solver for linear system solutions. The two standard FEMs also use the sparse
direct solver. As the main contribution to the earlier works, this report is the first to
describe the robustness of PW-FEM for application to room acoustics problems and to
show performance over standard FEMs when using a sparse direct solver. Note that the
present paper specifically addresses 2D room acoustics problems. However, the presented
formulation using our recently developed rule in the high-order Gauss–Legendre rule
and the proposal on mesh generation would be a good foundation for constructing robust
and efficient 3D room acoustics solver using PW-FEM. Furthermore, we expect that the
presented 2D PW-FEM would be helpful as a rough room acoustics design tool at an
early stage of acoustics design, such as examining room shapes and placement of sound
absorbers and acoustic diffusers, with higher accuracy than linear and quadratic FEMs.

The remainder of this study is organized as explained below. First, we describe the
theory of the PW-FEM for the readers’ convenience. Then, we conducted three numerical
experiments. As a fundamental investigation, we first present the effectiveness of a mode
of plane-wave enrichment called the Variable q-approach for room acoustics simulation
using a mesh consisting of various sized elements compared to another mode called the
Constant q-approach via numerical experiments predicting sound fields in a real-scale office
room with a rib-type acoustic diffuser. The second numerical experiment investigates the
effects of the spatial resolution of used mesh and room geometry on the robustness of the
PW-FEM in multi-frequency analysis. Finally, we present the performance of the PW-FEM
against the classical linear and quadratic FEMs. The discussion in this paper is limited
to cases using a high-order Gauss–Legendre rule for element matrices’ construction, as
shown in Section 2, because it is the general approach able to use any type of FEs. However,
analytical integration schemes have been studied to enhance the efficiency of the PW-FEM
when using a mesh discretized with larger elements than the wavelength of the analyzed
frequencies. For readers interest in the analytical integration schemes, earlier reports of the
literature [50,51] are useful.

2. Theory
2.1. Discretization of the Closed Sound Field Using Plane-Wave-Enriched FEM

We considered a sound propagation problem in a closed sound field Ω with boundary
Γ governed by the following Helmholtz equation in terms of sound pressure p at the
wavenumber in air k0 as shown below:

∇2 p + k2
0 p = 0 in Ω. (1)

The boundary Γ is composed of three boundary conditions (BCs): a rigid BC Γ0, a
vibration BC Γv, and an absorbing BC Γz. They are respectively described as:

∂p
∂n

=


0 on Γ0

−jωρ0vn on Γv
−jk0Yn p on Γz

, (2)

where j, ω, ρ0, vn, and Yn respectively represent the imaginary unit, the angular frequency,
the air density, the vibration velocity, and the specific acoustic admittance ratio. Note that
Yn introduces the sound absorption effect of materials. One can use theoretical calculation
by the transfer matrix method or impedance tube measurements to obtain Yn of porous
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and Helmholtz type sound absorbers. The following equation is also available when using
real-valued Yn as a simple absorption treatment.

Yn =

(
1 +
√

1− α0

1−
√

1− α0

)−1

, (3)

where α0 is the normal incidence sound absorption coefficient. The weak form of the
Helmholtz equation for plane-wave-enriched FEM is:∫

Ω
(−∇φ∇p + k2

0φp)dΩ +
∫

Γ
φ

∂p
∂n

dΓ = 0, (4)

where φ denotes the arbitrary weight function. A classical FEM approximates sound
pressure at an arbitrary point p(x, y) within an element Ωe as:

p(x, y) =
n

∑
i=1

Ni(ξ, η)pΩe
i in Ωe, (5)

where Ni(ξ, η) and pΩe
i respectively represent the shape function in two-dimensional

local coordinates (ξ, η) and nodal sound pressure. The present paper used the following
Lagrange polynomials for Ni(ξ, η) as:

La(ξ) =
pξ+1

∏
b=1,(b 6=a)

ξ − ξb
ξa − ξb

. (6)

The Lagrange polynomial La(ξ) above represents a function form for the ξ direction,
in which a is the node location, ξa is their local coordinate, pξ + 1 is the node number used
for approximation, and pξ is the order of the polynomial. By application of this expression
to the η direction, the shape function Ni(ξ, η) for quadrilateral elements is given as:

Ni(ξ, η) = La(ξ)La(η). (7)

The present paper uses four-node quadrilateral elements (Q4s) with the polynomial
order of pξ = pη = 1 for the PW-FEM, and Q4s and nine-node quadrilateral elements (Q9s)
with pξ = pη = 2 for linear and quadratic FEMs.

Actually, PW-FEM further approximates nodal sound pressure pΩe
i with the plane-

wave enrichment. That is, pΩe
i is approximated by a sum of plane waves propagating in

various directions as:

pΩe
i =

qi

∑
l=1

ejk0(x cos θl+y sin θl)Al
i , (8)

where qi, θl , and Al
i respectively represent the number of plane waves added at node i, the

angles of the plane waves, and the amplitude of the plane waves propagating in a direction
θl . The method of determining the adding number of plane waves is explained later. With
Equations (5) and (8), the PW-FEM approximates p(x, y) within an element as:

p(x, y) =
n

∑
i=1

qi

∑
l=1

Ni(ξ, η)ejk0(x cos θl+y sin θl)Al
i = Pae in Ωe, (9)

where ae is the element amplitude vector. The vector P = (P1, P2, · · · , Pm, · · · , PqΩe
tot
)

is a new shape function vector constructed from the new shape function P, which is
expressed as:

Pm(ξ, η) = Ni(ξ, η)ejk0(x cos θl+y sin θl), (10)
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with:

m = (
i

∑
i=1

qi)− qi + l, (11)

qΩe
tot = ∑

i∈Ωe

qi. (12)

Inserting the three BCs given by Equation (2) and the PW-FE approximation in Equa-
tion (9) into the weak form of the Helmholtz equation in Equation (4), one can obtain the
following linear system of equations with the sparse coefficient matrix expressed as:

[K − k2
0M + jk0C]A = −jωρ0Q, (13)

with:
K = ∑

e
ke = ∑

e

∫
Ωe

(∇P)T∇PdΩe, (14)

M = ∑
e

me = ∑
e

∫
Ωe

PTPdΩe, (15)

C = ∑
e

ce = ∑
e

Yn

∫
Γe,z

PTPdΓe, (16)

A = ∑
e

ae, (17)

Q = ∑
e

qe = ∑
e

vn

∫
Γe,v

PTdΓe. (18)

Here, K, M, and C respectively represent the global stiffness matrix constructed from
an element matrix ke, the global mass matrix constructed from element mass matrix me,
and the global dissipation matrix constructed from element dissipation matrix ce. Also in
that equation, A and Q respectively denote the nodal amplitude vector constructed from
element amplitude vector ae and the external force vector constructed from element external
force vector qe. The domain and boundary integrals in the element matrix constructions
are calculated using high-order Gauss–Legendre rules. As an example, ke is calculated as:

ke =
ng

∑
i=1

ng

∑
j=1

ωiωj(∇P(ξi, ηj))
TP(ξi, ηj)det(J), (19)

where ωi and ωj respectively stand for weights at the integration points (ξi, ηj) and where
det(J) denotes the determinant of the Jacobian matrix J. The number of integration points
ng is determined by the following recently developed equation [40] depending on the
analyzed frequency and element size as:

ng = int(5nw + 6), (20)

where the function int() represents the conversion to an integer by rounding down and
nw is the ratio of wavelength λ to the longest edge length in each element hΩe

max, i.e.,
nw = hΩe

max/λ. Using the high-order Gauss–Legendre rule with Equation (20), one can
analyze the frequency response at a wide frequency range faster than the rule that is often
used, i.e., ng = int(10nw + 1) for high frequencies, while maintaining the accuracy because
of the reduced number of integration points ng.

Finally, complex sound pressure in the domain Ω is calculated by substituting Al
i

obtained from Equation (13) into Equation (9). The present study used a sparse direct
solver called PARDISO (included in Intel Math Kernel Library) to solve the linear system
of equations of Equation (13). The coefficient matrix is stored using a sparse storage format,
namely the compressed row storage format.
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2.2. Setup of the Plane-Wave Number for q-Refinement

The PW-FEM performs multi-frequency analysis under a single mesh using a q-
refinement approach, by which the added plane-wave number increases gradually accord-
ing to the analyzed frequencies. This paper used the following methods for ascertaining
how many plane waves add to the nodal points in a PW-FEM mesh [34,37,39] as:

qi = round
[

k0hΩ
max + C(k0hΩ

max)
1
3

]
, (21)

qi = round
[

k0hΩ
max,i + C(k0hΩ

max,i)
1
3

]
, (22)

where hΩ
max and hΩ

max,i respectively denote the longest edge length in all elements and the
longest edge length connected to node i. The constant C adjusts the resulting accuracy, but
no established method exists to set an appropriate value of C in advance. We designate the
approach with Equation (21) as the Constant q-approach because the numbers of added
plane waves are constant at all nodal points. We designate the approach with Equation (22)
as the Variable q-approach, which uses variable numbers of added plane waves according
to the edge length connected to node i. Figure 1a,b present examples of the difference of
q-refinement using the Constant q- and Variable q-approach under a mesh consisting of four
elements discretized with a 0.1 m × 0.1 m square element, two 0.5 m × 0.1 m rectangular
elements, and a 0.5 m × 0.5 m square element. Note that the total DOFs qΩ

tot in the PW-FE
mesh with both approaches can be calculated by qΩ

tot = ∑i∈Ω qi, and qΩ
tot becomes smaller

for the Variable q-approach, as in Figure 1a,b.
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Figure 1. An example of q-refinement using the Constant q- and Variable q-approach: (a) the difference
between Constant q and Variable q in the element patch composed of a 0.1 m × 0.1 m square element,
two 0.5 m × 0.1 m rectangular elements, and a 0.5 m × 0.5 m square element; (b) the change in the
adding plane-wave number in the Variable q-approach at frequencies up to 4 kHz for the case with
C = 8 when using hΩ

max,i = 0.5 m and 0.1 m.

3. Numerical Experiments

This section presents an assessment of the robustness and efficiency of the PW-FEM
with Variable q-approach via a 2D real-scale office room problem with a rib-type acoustic
diffuser, at frequencies up to 4 kHz. As a basic investigation, Section 3.2 clarifies the
effectiveness of the Variable q-approach against the Constant q-approach. Section 3.3 shows
mesh size and room geometry effects on the PW-FEM robustness using two models with
different geometrical complexities and three meshes with different spatial resolutions.
Finally, in Section 3.4, we show the efficiency of the PW-FEM with Variable q-approach
through the performance comparison against the classical linear and quadratic FEMs.
Note that all computational codes used in the present study are written by Fortran 90
programing language.
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3.1. Problem Description and Numerical Setup

Figure 2a,b presents the office room models with different geometrical complexities:
Model A in Figure 2a includes a rib-type acoustic diffuser, and Model B in Figure 2b, which
has a simpler room shape, and which does not include the diffuser. We used Model B only in
Section 3.3 for revealing the room geometry effect on the robustness. The two models have
three BCs comprising a weakly absorbing boundary Γz,1, an absorbing boundary Γz,m, and
a vibration boundary Γv. The weakly absorbing boundary Γz,1 has a real-valued impedance
corresponding to the normal incidence absorption coefficient of α0 = 0.05. The absorbing
boundary Γz,m assumes a honeycomb-backed microperforated panel (MPP) absorber with
the following geometrical parameters: 0.5 mm hole diameter, 1 mm panel thickness, 0.75%
perforation ratio, 1.13 kg/m2 surface density, and 0.015 m backing honeycomb core depth.
The absorption characteristics of the MPP absorber computed using the theory [9] are
also presented in Figure 2. The vibration boundary Γv assuming a loudspeaker has a
vibration velocity of vn = 1.0 m/s. The speed of sound c0 = 340.0 m/s and air density
ρ0 = 1.205 kg/m3 were assumed.
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Figure 2. Two office room models with 21 sound-receiving points: (a) office room with the rib-type
acoustic diffuser (Model A) and (b) more simply shaped office room without the acoustic diffuser
(Model B). The room model includes three BCs: weakly absorbing surface Γz,1, frequency-dependent
absorbing surface Γz,m assuming a honeycomb-backed MPP sound absorber, and vibration boundary
Γv assuming a loudspeaker. The absorption characteristics of the MPP absorber are also shown.

These problems have no analytical solutions. Therefore, we calculated reference
solutions with a fourth-order-accurate FEM [8,52] using sufficiently fine meshes. Three
meshes were created according to the analyzed frequencies where 0.01 m square elements
were used for frequencies of 20 Hz to 1.5 kHz, 0.005 m square elements were used for
frequencies of 1.5 kHz to 3 kHz, and 0.0025 m square elements were used for frequencies
of 3 kHz to 4 kHz. These meshes have spatial resolutions of 22, 22, and 34 elements
per wavelength, respectively, at 1.5 kHz, 3 kHz, and 4 kHz. Table 1 presents detailed
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information of the three meshes for Model A and Model B. Here, Nelement, Nnode, and h
respectively represent the number of elements and nodes and the element length.

Table 1. Detailed information of the used meshes for the reference solution.

Model A Model B
20 Hz–1.5 kHz 1.5–3 kHz 3–4 kHz 20 Hz–1.5 kHz 1.5–3 kHz 3–4 kHz

Nelement 324,900 1,299,600 5,198,400 323,900 1,295,600 5,182,400
Nnode 326,240 1,302,280 5,203,760 325,140 1,298,080 5,187,360
h 0.01 m 0.005 m 0.0025 m 0.01 m 0.005 m 0.0025 m
nw 0.0006–0.044 0.022–0.044 0.022–0.029 0.0006–0.044 0.022–0.044 0.022–0.029

Figure 3a,c respectively shows three PW-FEM meshes of Model A with different spacial
resolutions: Mesh 1, Mesh 2, and Mesh 3. Table 2 presents detailed information of the
meshes which were used. Mesh 1–Mesh 3 are discretized, respectively, with rectangular
elements of 0.05–0.5 m, 0.05–0.25 m, and 0.05–0.1 m. We also used three PW-FEM meshes for
Model B with different spatial resolutions: Mesh 1, Mesh 2, and Mesh 3 respectively have
the same spatial resolution as in Model A. Their longest element lengths in Mesh 1–Mesh 3
are respectively 5.88-, 2.94-, and 1.18-times longer than the wavelength at 4 kHz, as might
be apparent in the nw values in Table 2. The maxima of hΩ

max,i in Mesh 1 and Mesh 2 are
respectively five-times and two-and-a-half-times longer than the minima. hΩ

max,i in Mesh
3 is constant as 0.1 m. One can find that the three PW-FEM meshes have markedly small
numbers of Nelement and Nnode because of the use of larger elements than the wavelength
of the upper-limit frequency.
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Figure 3. Meshes of Model A used for the PW-FEM: (a) Mesh 1, (b) Mesh 2, and (c) Mesh 3.

Table 2. Detailed information of the used meshes for the PW-FE analysis.

Model A Model B
Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3

Nelement 828 1302 3259 808 1282 3239
Nnode 909 1399 3403 869 1359 3363
Ωmax,i 0.1–0.5 m 0.1–0.25 m 0.1 m 0.1–0.5 m 0.1–0.25 m 0.1 m
nw 0.006–5.88 0.006–2.94 0.006–1.18 0.006–5.88 0.006–2.94 0.006–1.18
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In Section 3.4, to demonstrate the performance of the PW-FEM against the classical
linear and quadratic FEMs, we used the office room problem with Model A, in which
the classical linear FEM uses the same meshes as used for the fourth-order-accurate FEM.
For the quadratic FEM, we used two meshes discretized with 0.025 m square elements at
frequencies of 20 Hz to 2 kHz and with 0.0125 m square elements at frequencies of 2 kHz to
4 kHz. Table 3 presents detailed information of the meshes. Both spatial resolutions were
6.8 elements per wavelength at each upper-limit frequency.

Table 3. Detailed information of the used meshes for the quadratic FE analysis.

Model A
20 Hz–2 kHz 2–4 kHz

Nelement 51,984 207,936
Nnode 209,008 833,888
h 0.025 m 0.0125 m
nw 0.001–0.15 0.074–0.15

To evaluate the accuracy, we define the absolute error Labs( f ) with respect to the
spatial distribution of the sound pressure level (SPL) as:

Labs( f ) =
1

Np

Np

∑
i=1
|Lfem( f , i)− Lref( f , i)|, (23)

where Lfem( f , i) and Lref( f , i) respectively represent the SPLs in a receiver i at a frequency
f calculated using the PW-FEM and the classical linear and quadratic FEMs, and the
reference solutions calculated using the forth-order-accurate FEM. Also, Np is the number
of receiving points.

3.2. Effectiveness of the Variable q-Approach against the Constant q-Approach

This section presents our demonstration of PW-FEM performance with Variable q-
approach against that with the Constant q-approach through numerical experiments pre-
dicting sound fields with Model A at frequencies 20 Hz–4 kHz with a 1 Hz interval. For
Mesh 3, the same results were obtained using either the Variable q-approach or the Con-
stant q-approach because both hΩ

max in Equation (21) and hΩ
max,i in Equation (22) are set

to 0.1 m. The constant C in Equations (21) and (22) was set as eight. We can draw the
same conclusion presented later for other values of C. In the present case, the DOFs in the
Constant q-approach and the Variable q-approach respectively changed as 4545–58,176 and
3645–39,534 for Mesh 1, 5596–55,960 and 5146–48,056 for Mesh 2, and 10,209–78,269 for
Mesh 3.

Figure 4a,c respectively portrays the comparison of the frequency responses at a
receiving point R1 among the PW-FEM results calculated using the Variable q-approach
and the Constant q-approach and the reference solution for Mesh 1, Mesh 2, and Mesh 3. The
result obtained using the Constant q-approach with Mesh 1 presents a marked difference at
higher frequencies than 500 Hz, where SPLs diverge completely from the reference solution
because adding many more plane waves than necessary produce an ill-conditioned linear
system. For Mesh 1, more plane waves than necessary are added to small elements because
qi are determined by the maximum edge length in all elements. The result obtained
using the Variable q-approach with Mesh 1 shows a much better agreement with the
reference solution at frequencies lower than 2 kHz, but still shows SPL divergence at many
frequencies above 2 kHz. The results with Mesh 2 obtained using either the Variable
or Constant q-approach show better agreements to the reference solution. However, the
Constant q-approach has still diverged SPLs at frequencies higher than 2.5 kHz, whereas
the Variable q-approach results show an excellent agreement up to 4 kHz. The results
indicate that the greater the variation in the element size in a PW-FE mesh, i.e., a mesh
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consisted of largely different sizes of elements, the two approaches become unstable, but
the Variable q-approach can produce more stable results for such a condition to some
degree. As might be apparent in the Mesh 2 and Mesh 3 results, the PW-FEM can produce
an excellent agreement when using a mesh that has smaller variation in the element sizes.
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Figure 4. Comparisons of the frequency responses at R1 among the PW-FEM using the Variable
q-approach and the Constant q-approach and the reference solution: (a) Mesh 1, (b) Mesh 2, and (c)
Mesh 3.

Furthermore, Figure 5a,c portrays the spatial distributions of SPLs at 1 kHz for the
reference solution and the PW-FEM using the Constant q-approach and the Variable q-
approach with Mesh 1. The SPLs in the PW-FEM were calculated at the same nodes in the
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reference solution. The figure includes the DOFs and absolute error Labs( f ) for the two
approaches. The Constant q-approach result shows a marked difference from the reference
solution with an Labs of 9.2 dB. That is readily apparent where SPLs show high values.
In contrast, the Variable q-approach result shows an excellent match with the reference
SPL distribution with an Labs of 0.1 dB. As a reference, Constant q-approach adds 26 plane
waves to all nodal points, but the Variable q-approach adds 26 plane waves to nodes with
hΩ

max,i of 0.5 m and 12 plane waves to nodes with hΩ
max,i of 0.1 m according to the value

of hΩ
max,i.
As a quantitative evaluation of the accuracy, Figure 6 presents a comparison of the ab-

solute errors among PW-FEMs using the Variable q-approach and the Constant q-approach
for the cases with Mesh 1, Mesh 2 and Mesh 3. We calculated the absolute error using
the 21 sound-receiving points shown in Figure 2. As described before, the Mesh 3 result
becomes the same for the Variable and Constant q-approaches. To capture the error be-
havior easily, we applied 1/3 octave band averaging to the absolute error. The Constant
q-approach result with Mesh 1 shows absolute errors larger than 5 dB at frequencies higher
than 630 Hz. In contrast, the absolute errors using the Variable q-approach with Mesh 1 are
less than 1 dB up to 2.5 kHz. However, the accuracy deteriorates at further high frequencies:
3 dB at 3.15 kHz and 7 dB at 4 kHz. The absolute errors of both approaches with Mesh 2
become much smaller compared to the Mesh 1 results, and the Variable q-approach shows
better result. The absolute errors are lower than 0.4 dB up to 2.5 kHz for both approaches.
At higher frequencies, the Constant q-approach has an absolute error of 3 dB at 3.15 kHz
and 5 dB at 4 kHz, whereas the Variable q-approach shows absolute errors lower than
1.3 dB up to 4 kHz. Furthermore, the absolute error of the Variable q-approach with Mesh
2 is equivalent to the error with the finest mesh, Mesh 3. Because practical room acoustic
problems with complex room geometries require the use of a mesh that includes various
sizes of elements, q-refinement using the Variable q-approach is expected to be favorable
for a robust room acoustics simulation. The next section further explores details of how
mesh size and room geometry affect the robustness of the PW-FEM using the Variable
q-approach.
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Figure 5. A comparison of the SPL distribution at 1 kHz among (a) the reference solution, (b) the
PW-FEM using the Constant q-approach, and (c) the PW-FEM using the Variable q-approach.
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3.3. Mesh and Room Geometry Effects on the Robustness of the PW-FEM Using the Variable
q-Approach

This section presents a description of the effects of the used mesh and room geometry
on the robustness of the PW-FEM using the Variable q-approach via numerical experiments
predicting sound fields in the two office rooms, Model A and Model B, having different
room geometries, respectively, with and without acoustic diffusers. We used the three
meshes, i.e., Mesh 1–Mesh 3, having different spatial resolutions. For both room models,
we calculated the sound fields at frequencies of 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz,
2 kHz, 3 kHz and 4 kHz, changing the constant C in Equation (22), which controls the
added plane-wave number in the plane-wave enrichment. The accuracy was evaluated
using absolute error Labs( f ) at all points that correspond to all nodal points in the reference
solution meshes.

Figure 7a,h shows the absolute error Labs( f ) for Model A and Model B as a function
of C at the eight frequencies, as calculated using Mesh 1, Mesh 2, and Mesh 3. From these
figures, one can confirm how the meshes used and room geometry affect the robustness
of the PW-FEM analysis when using the different values of C. The figures show different
error behaviors for the results below 500 Hz and above 1 kHz. Below 500 Hz, where the
wavelength is still larger than the element sizes for all meshes, the absolute errors tend to
become smaller as C increases regardless of the used meshes and models. In addition, the
error magnitude is smaller than 1 dB. In contrast, at frequencies higher than 1 kHz, one
can clearly found the effects of the mesh used and room geometry on the robustness of
the PW-FEM. First, regarding the room geometry effect, larger absolute errors can be seen
for the more complex model, Model A, including the acoustic diffuser, when the errors
are compared with the same spatial resolution mesh. Furthermore, one can find for the
Model A that the range of C keeps the absolute error small becoming narrower than Model
B. For example, at 1 kHz, the absolute error of Model A with Mesh 1 remains less than
1 dB for the C values up to nine, but that of Model B keeps the error level for all C’s up
to thirteen. This narrow band effect in C is also true for both models when using a mesh
including larger-sized elements. For Model A at 2 kHz, we can find that the absolute errors
in Mesh 1 show less than 1 dB for C = 6–8, but for Mesh 2 and Mesh 3, the ranges that
keep the error level become respectively C = 5–10 and C = 6–13. For Mesh 1 in Model
B at 2 kHz, the small error level can be achieved with C = 5–8 and 10, but Mesh 2 and
Mesh 3 achieve this for any C values. At the highest 4 kHz, the absolute errors of Model A
using the coarsest Mesh 1 no longer become less than 1 dB for any values of C, whereas
Model B using Mesh 1 can achieve the small error level with C = 10–13. However, for
Model A, the error can reduce within 1 dB using the finer Mesh 2 and Mesh 3 when using
appropriate values of C. For Mesh 2, C = 8 and 9 only achieve this small error level. As a
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reference, Figure 8a,c shows a comparison of the spatial distributions of the SPLs for Model
A among the reference solution, the PW-FEM using Mesh 2 with C = 9, and the PW-FEM
using Mesh 2 with C = 11. The figure also includes a spatial distribution of the absolute
error between the reference solution and the PW-FEM results. The SPL distributions from
the PW-FEM using Mesh 2 with C = 9 show an excellent agreement with the reference
solution with Labs = 0.4 dB, whereas the large error of Labs = 4.8 dB can be found in the
SPL distributions from the PW-FEM using Mesh 2 with C = 11. For Mesh 3, that keeps the
maximum element size, comparable to the wavelength of the upper-limit frequency, we can
use a wider range of C = 8 and 10–13. From these results, it can be concluded that (1) the
robustness of the PW-FEM on 2D room acoustic problems depends on both the used mesh
and room geometry, especially at high frequencies; (2) using a coarse mesh including an
element size larger than the wavelength of the upper-limit frequency makes it challenging
to set an appropriate value of C especially for complex room shapes; (3) the difficulty can
be alleviated using a mesh where the maximum element size remains comparable to the
wavelength of the upper-limit frequency.
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Figure 8. A comparison of the SPL distribution at 4 kHz of the reference solution and the PW-FEM
using Mesh 2 with C = 9 and C = 11 and the SPL difference from the reference solution.

3.4. Performance Comparison with Classical Linear and Quadratic FEMs

We demonstrate the accuracy and computational costs of the PW-FEM on 2D room
acoustic problems against the classical and quadratic FEMs through numerical experiments
predicting the sound field in Model A at frequencies of 20 Hz to 4 kHz with a 1 Hz interval.
The PW-FEM uses the recently developed rule for determining integration points number.
Both the PW-FEM and the classical FEMs use a sparse direct solver, PARDISO, for the linear
system solution. We used the three meshes shown in Figure 3a,c, with the constant C set
to eight for the PW-FE analyses. For the linear and the quadratic FEMs respectively using
Q4s and Q9s as the FEs, we used three meshes in Tables 1 and two meshes in Table 3. All
computations were performed with a computer, PRIMERGY CX2550/CX2560 M4 with two
processors (Xeon Gold 6154 3.0 GHz, 18 core; Intel Corp., Santa Clara, CA, USA) using a
Fortran compiler (Ver. 2020; Intel Corp.). Note that the computational cost comparison was
based on sequential computation.

As a comparison of the accuracy, Figure 9 shows the absolute errors among the PW-
FEMs using the three meshes, the linear FEM, and the quadratic FEM at frequencies up
to 4 kHz. Only the PW-FEMs using Mesh 2 and Mesh 3 show a high accuracy at all
frequencies. The PW-FEMs using Mesh 2 have absolute errors less than 1 dB at frequencies
below 3.15 kHz and 1.3 dB at 4 kHz, and the same level of accuracy can also be seen for
the PW-FEMs using Mesh 3. In contrast, the PW-FEM using Mesh 1 shows higher errors
3 dB at 3.15 kHz and 7 dB at 4 kHz. The classical linear and quadratic FEMs have higher
accuracy compared to the PW-FEMs at frequencies below 250 Hz, but have larger errors
at frequencies greater than 250 Hz because of the large dispersion errors. The linear FEM
shows absolute errors higher than 3 dB at frequencies above 1.25 kHz. The quadratic
FEM also has absolute errors higher than 3 dB at frequencies above 3.15 kHz. The results
clearly demonstrate that the PW-FEM using an appropriate mesh and C value produces
highly accurate results at wideband compared to the classical linear and quadratic FEMs,
which use higher-resolution meshes than the well-known rule of thumb, on 2D room
acoustics problems.
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Figure 9. A comparison of the absolute errors of the PW-FEM using Mesh 1, Mesh 2, and Mesh 3 and
the classical linear and quadratic FEMs.

In room acoustics simulation, the calculation of an impulse response is essential
to evaluate the room acoustics. To this point, we can further demonstrate the superior
approximation capability of the PW-FEM against the quadratic FEM. Figure 10a,d shows a
comparison of the impulse responses calculated using the inverse Fourier transform of the
reference solution and the PW-FEM using Mesh 3 and the quadratic FEM at time ranges
t = 0.0–0.02 s and 0.30–0.32 s. We considered the modulated Gaussian pulse waveform with
the frequency characteristics in Figure 11 for the inverse Fourier transform. The source
function form v(t) is defined as:

v(t) =
2π

ρ0
(0.4− c0t)e

−(0.4−c0t)2

d2 , (24)

where the parameter d is defined as d = c0e
2π fmax

with the upper-limit frequency fmax = 2800 Hz.
Furthermore, we re-computed the complex sound pressure at frequencies of 1 Hz to 6 kHz
with a 1 Hz interval to guarantee spectrum continuity in the inverse Fourier transform.
From Figure 10a,c, we can see that both the PW-FEM and quadratic FEM show excellent
agreement to the reference solution at the early time region at t = 0.0–0.02 s. However,
the quadratic FEM shows a large discrepancy from the reference solution at t = 0.3–0.32 s,
whereas the PW-FEM still shows excellent agreement. This indicates that waveforms calcu-
lated using the quadratic FEM deteriorate over time with its dispersion error characteristics,
i.e., the sound speed increases beyond the exact sound speed at higher frequencies. To
quantitatively evaluate the similarity to the reference solution waveforms, we define the
cross-correlation coefficient as:

CC =
∑

Nstep
n=1 p̃n pn

ref√
∑

Nstep
n=1 ( p̃n)2

√
∑

Nstep
n=1 (pn

ref)
2

, (25)

where p̃n and pn
ref respectively represent the sound pressure at time step n calculated using

the PW-FEM or quadratic FEM and the reference solution. Nstep denotes the number of
time steps. The PW-FEM waveforms showed a higher CC value averaged over 21 receiving
points with CC = 0.998, whereas the quadratic FEM has a slightly lower CC value of 0.960.
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Figure 11. Frequency characteristics of the modulated Gaussian pulse.

Figure 12a,c presents the comparisons of the CPU times on sequential calculation of
the PW-FEMs with Mesh 1, Mesh 2 and Mesh 3 and the classical linear and quadratic FEMs,
respectively, showing (a) CPU times in constructing the global stiffness and mass matrix,
K and M, (b) CPU times in solving the linear system of equations, and (c) CPU times in
total. The results indicate that the hotspot of computations in the PW-FEM is the global
stiffness and mass matrix construction process, which occupy 96.4% in the total CPU time
for Mesh 1 at 4 kHz, and it is 82.6% for Mesh 2 and 61.7% for Mesh 3. It is also noteworthy
that using the finest mesh, Mesh 3, provides the fastest analysis at frequencies higher
than 1.5 kHz. In contrast, the PW-FEM can quickly solve the linear system of equations
with the sparse direct solver thanks to the marked reduction in the DOFs, as shown in
Figure 12b. As an example, the total CPU times at 4 kHz are 191 s (Mesh 1), 44 s (Mesh 2),
and 21 s (Mesh 3). In the PW-FEM used here, the element stiffness and mass matrix of
size qΩe

tot × qΩe
tot must be processed by the high-order Gauss–Legendre integration, which

has an O(n2
g) numerical complexity. Since the integration point number ng increases as



Acoustics 2022, 4 69

the element size becomes larger, the computational cost per element at high frequencies
increases significantly, as can be seen in the Mesh 1 result. In addition, the contribution
of increasing ng is larger than that of increasing elements by using small-sized elements.
Therefore, the total CPU time becomes shorter for the case using a mesh with smaller
elements, as can be seen in Figure 12c. This result and considering the robustness issue
suggest the use of a mesh discretized with an element size comparable to the wavelength
of the upper-limit frequency to perform efficient acoustics simulation with the PW-FEM
when using a high-order Gauss–Legendre rule.
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Figure 12. Comparisons of the CPU times on sequential calculation of the PW-FEM with Mesh 1,
Mesh 2, and Mesh 3 and the classical linear and quadratic FEMs: (a) CPU times in constructing the
global stiffness and mass matrix, K and M, (b) CPU times in solving the linear system of equations,
and (c) CPU times in total.

However, the classical linear and quadratic FEMs can construct element matrices
significantly faster than the PW-FEM, even in meshes including a significantly large number
of FEs, as can be seen in Figure 12a. Such faster matrices are possible because the linear
and quadratic FEMs respectively need only an O(1) numerical complexity for element
construction in the stiffness and mass matrix of size 4× 4 and 9× 9 using two- and three-
point Gauss–Legendre integrations. However, the classical linear and quadratic FEMs have
huge linear system sizes with DOFs greater than 5,000,000 for the linear FEM and 800,000
for the quadratic FEM, as can be seen in the used mesh at 4 kHz. Therefore, the hotspots
of computation in the linear and quadratic FEMs are the solution process of the linear
system solution, as shown in Figure 12b. The linear system solution process respectively
occupies 97.0% and 93.3% of all CPU time for the linear and quadratic FEMs at 4 kHz.
Results of the computational times’ comparison among the three solvers show that, at
4 kHz, the PW-FEM using Mesh 3 is five-times faster than the linear FEM and two-times
slower than the quadratic FEM. The quadratic FEM is the fastest, but the PW-FEM using
Mesh 3 has a much better accuracy, as shown in Figure 9, and with a higher CC value in
the impulse response.

To compare the memory requirements of the three solvers, Figure 13a,c presents
comparisons of (a) the DOFs, (b) the number of nonzero elements in the coefficient matrix,
and (c) the peak memory consumption at frequencies up to 4 kHz. As shown in Figure 13a,
the DOFs in the PW-FEM using the three meshes respectively change as 3645–39,534 for
Mesh 1, 5146–48,056 for Mesh 2, and 10,209–78,269 for Mesh 3. The linear FEM needs
DOFs of 326,240, 1,302,280, and 5,203,760 for the analyses at frequencies of 20 Hz to
1.5 kHz, 1.5 kHz to 3 kHz, and 3 kHz to 4 kHz. For the quadratic FEM, 209,008 DOFs
and 833,888 DOFs are required at frequencies of 20 Hz to 2 kHz and 2 kHz to 4 kHz. This
comparison suggests that the PW-FEM with Mesh 3 has much better accuracy than the
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classical FEMs, requiring DOFs of less than 1/67 and 1/11 compared to the classical linear
and quadratic FEMs.

Furthermore, Figure 13b shows that the numbers of nonzero elements in the coefficient
matrix of the PW-FEM are about 1/3 of the linear FEM and almost identical to the quadratic
FEM at 4 kHz. Results of comparison of the DOFs and the number of nonzero elements
also show that the PW-FEM matrix is sparse, where the nonzero elements appear in only
1.1% (Mesh 1), 0.7% (Mesh 2), and 0.3% (Mesh 3) components in the coefficient matrix,
i.e., 99% of matrix components are zero. With this sparsity, the PW-FEM using the three
meshes requires 1.7GB (Mesh 1), 1.7GB (Mesh 2), and 2GB (Mesh 3) at 4 kHz. Although the
PW-FEM has much better accuracy, these memory requirements are lower than the linear
and quadratic FEMs, which respectively require 15.8 GB and 2.3 GB at 4 kHz. It can be
concluded that the PW-FEM is a memory-efficient method able to obtain accurate results at
wide frequencies.
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Figure 13. Comparisons of (a) the DOFs, (b) the number of nonzero elements, and (c) the peak
memory consumption, of the PW-FEM with Mesh 1, Mesh 2, and Mesh 3 and the classical linear
and quadratic FEMs.

4. Conclusions

This paper has presented a discussion of the robustness of the PW-FEM on 2D room
acoustic problems, specifically addressing the effects of the spatial resolution of the mesh
that is used and room geometry. The discussion includes a suggestion on the mesh gen-
eration for robust and efficient simulations when using a high-order Gauss–Legendre
rule in the element matrix calculations. We also demonstrated the performance of the
PW-FEM using our recently developed rule for determining the integration points number
in a high-order Gauss–Legendre rule and a sparse direct solver against the classical linear
and quadratic FEMs. For the discussion of the robustness and the performance exami-
nation against the two classical FEMs, sound fields in real-scale office rooms with and
without rib-type acoustic diffusers were computed at frequencies up to 4 kHz. First, we
demonstrated the effectiveness of using q-refinement with the Variable q-approach over the
Constant q-approach since the Variable q-approach can produce more stable results when a
mesh includes elements of various sizes, which is a natural situation in the room acoustics
problem. Then, we examined how the robustness of the PW-FEM changes according to the
spatial resolution of the used meshes and the complexity of the room geometry. The results
revealed that the robustness of the PW-FEM is dependent on both the spatial resolution of
the meshes used and the complexity of the room geometry, especially for a high-frequency
range. Use of coarse meshes including elements that have a larger size than the wavelength
of the upper-limit frequency makes the setup of an appropriate value of C considerably
difficult, especially for complex room shapes, because the range of C which maintains a
small error level becomes narrow. However, we found that the difficulty can be alleviated
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when using a mesh in which the maximum element size maintains a comparable value to
the wavelength of the upper-limit frequency. In that case, we have a wider range of C to
keep the error level small. Therefore, from these results, as the novelty of the present work,
we can make a suggestion using a mesh discretized with element sizes comparable to the
wavelength of the upper-limit frequency for a robust room acoustics simulation using the
PW-FEM, i.e., nw should be kept as nw ' 1. The proposal is effective from the aspect of
computational efficiency. As demonstrated in the performance examination, the compu-
tational times of the PW-FEM using a high-order Gauss–Legendre rule become shorter
with a fine mesh. Additionally, we still have a sufficient DOF reduction while keeping a
high accuracy even in the use of the fine mesh discretized with element sizes comparable
to the wavelength of the upper-limit frequency. Because of the DOF reduction and the
sparsity of coefficient matrix, we can say that the PW-FEM is a memory-efficient solver
for wideband room acoustics simulation. The performance examination further revealed
that the PW-FEM using our recently developed rule for determining ng and a sparse direct
solver showed much better accuracy with smaller memory than the classical linear and
quadratic FEMs at the wideband and at a longer time range, but still with two-times slower
computational time as the quadratic FEM, which uses a mesh with a spatial resolution of
6.8 elements per wavelength.

However, future studies must be undertaken to elucidate characteristics of the PW-
FEM on room acoustic problems. Our future studies will include the application of the
present PW-FEM with the suggestion for larger-sized rooms with more complex geometries
such as concert halls. Also, we will develop a robust 3D room acoustic solver using PW-FEM.
Regarding this point, the present formulation with the recently developed integration rules
and the proposal on mesh generation would be helpful for 3D analysis with the definition of
plane waves in the spherical coordinate system because the element matrices construction
process in 3D problems is more time consuming than 2D problems. Furthermore, the
proposal on mesh generation will be a good basis for establishing a robust parameter setup
for 3D room acoustics simulation.
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