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Abstract: String instruments are complex mechanical vibrating systems, in terms of both structure and
fluid–structure interaction. Here, a review study of the modeling and simulation of stringed musical
instruments via the finite element method (FEM) is presented. The paper is focused on the methods
capable of simulating (I) the soundboard behavior in bowed, plucked and hammered string musical
instruments; (II) the assembled musical instrument box behavior in bowed and plucked instruments;
(III) the fluid–structure interaction of assembled musical instruments; and (IV) the interaction of a
musical instrument’s resonance box with the surrounding air. Due to the complexity and the high
computational demands, a numerical model including all the parts and the full geometry of the
instrument resonance box, the fluid–structure interaction and the interaction with the surrounding
air has not yet been simulated.
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1. Introduction

In musical acoustics, musical instruments are categorized based on criteria that depend
on the excitation mechanisms. These mechanisms have an important influence on the
spectra of the sounds. Thus, in terms of drive mechanisms, musical instruments of the
symphony orchestra in the Western European tradition are classified into string instruments,
wind instruments and percussion instruments [1]. This review is focused on the stringed
instruments which produce sound from vibrating strings when a performer plays the
strings in some manner. A stringed instrument consists of a structure with a cavity which
holds strings under tension. The structure radiates sounds if the strings vibrate. When the
strings vibrate, they produce a time-dependent force that sets the soundboard (top plate)
into motion. String instruments are complex mechanical vibrating systems, in terms of
both structure and the fluid–structure interaction [2]. The vibration of the air cavity and
the main body of the instrument is the main source of the produced sound, while the string
excitation alone has a negligible role in the produced sound. The whole instrument acts as
a filter that converts the excitation force of the strings to radiated sound [3].

The stringed instruments can be excited by bowing, plucking or hammering [4,5].
Representative bowed instruments are the violin, viola, cello, double bass, Yaylı tambur,
rebab and Cretan lyra. The plucked instruments are divided into short-necked plucked
instruments such as guitar, lute, oud, pipa and mandolin and long-necked plucked instru-
ments such as baglama, bouzouki, veena, setar and theorbo. The harp and the harpsichord
are built without a neck, and their plucking mechanism differs from the aforementioned
instruments; therefore, although they are plucked instruments, they do not belong to these
two categories. The piano and the dulcimer are representative hammered instruments.
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According to instrument builders and musicians, the four important features which
determine the instrument quality and character are the timbre (sound quality), the attack
behavior, the overall loudness and the degree of the possible timbre variation [6]. The
importance of timbre is evident mainly within a specific instrument family. Musicians
judge instruments to be interesting when they show a wide variety of possible timbres and
articulation changes [7]. Control of the attack behavior is also critical since instruments
with fast attack allow for fast playing [7]. The maximization of the instrument loudness is
also essential for instrument builders. Indicatively, an important element that contributes
decisively to the radiation efficiency of the violin is the existence of the sound post. Fur-
thermore, the degree of possible timbre variation produced by the player depends on the
response of the instrument to loudness variations [6].

The physical behavior of a stringed instrument can be examined under three con-
siderations: firstly, the stretched string behavior, whose vibration is controlled by the
player; secondly, the response of the soundbox of the instrument and the neighboring air
in response to the string motion; and thirdly, the radiated sound, almost entirely from the
soundbox. All three are interconnected and should not be treated independently [8]. In
many of the string instruments, the mechanical vibrations are transmitted to the body of the
instrument, which usually incorporates a hollow or encloses a volume of air. The vibration
of the body of the instrument and the enclosed air or chamber enables the vibration of the
string to be more audible to the performer and audience. For the majority of the string
instruments, the body is hollow; however, instruments that rely on electronic amplification,
such as the electric guitar, may have a solid body. The air cavity of a string instrument, such
as the violin or the acoustic guitar, functions as a Helmholtz-type resonator that reinforces
certain frequencies [3].

This review paper is structured in eight sections. In Section 2, the basic concepts of the
modal analysis of musical instruments are presented. Section 3 introduces the numerical
methods used to simulate the vibrational behavior of musical instruments. An overview
of the FEM simulation studies focused on the soundboards of stringed instruments is
presented in Section 4. In Section 5, literature studies on the vibration analysis of the
assembled instrument box are presented, while fluid–structure interaction studies that
consider the enclosed air of the assembled instrument box are presented in Section 6.
Section 7 introduces studies of the stringed instruments that produce sound vibrations
interacting with the surrounding air. The conclusions of this review are summarized in
Section 8.

2. Modal Analysis

The complex vibrations of musical instruments can be described in terms of normal
modes of vibration. Modal analysis of musical instruments is the study of their dynamic
properties under vibrational excitation. For this case, the instrument can be viewed as an
elastic structure. The frequency response of a musical instrument is found when one sums
the modal responses of its substructures according to their degree of participation in the
structural motion. Each mode of vibration is identified by three main parameters, namely
the natural frequency, the mode shape and the damping factor. Any deformation pattern
of a musical instrument is expressed by a combination of the mode shapes. The mode
shape is a deflection pattern that is related to a specific natural frequency and represents
the relative displacement of all parts of the instrument, in various directions, for that mode.
The damping factor of each mode is coupled to its natural frequency, while it is inversely
proportional to the mass distribution [4,9].

Experimental modal testing allows identification of modal parameters of vibrating
musical instruments such as natural frequencies, mode shapes and modal damping for the
substructures of the musical instruments. Modal testing may use continuous (sinusoidal),
impulsive or random excitation and may measure the response mechanically, optically
or indirectly by observing the radiated sound field. Mechanical techniques require an
excitation device such as a roving hammer or a fixed automated force hammer impacting
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the bridge of the stringed instrument [4]. Optical methods for vibration measurements,
such as holographic interferometry [10], laser Doppler vibrometry [11] and laser Doppler
velocimetry [12], are nondestructive, while holographic interferometry techniques [10,13]
have the advantage of full-field imaging. Electronic speckle pattern interferometry (ESPI),
also known as TV holography, is a technique which uses laser light together with video
detection recording and processing to visualize static and dynamic displacements of com-
ponents with optically rough surfaces [13,14]. The excitation force is measured with a force
transducer (piezoelectric transducer or load cell), the acceleration is measured with an
accelerometer and the structure velocity response is measured with a laser velocimeter
or by holographic interferometry. Data are converted into digital signals and stored on a
host computer. The analysis of the experimental signals is mainly performed with Fourier
analysis. The resulting frequency response function (FRF) demonstrates characteristic peak
resonances for different frequencies. Depending on the problem needs, the FRF is expressed
by several parameters, such as compliance (displacement/force), mobility (velocity/force),
accelerance (acceleration/force), dynamic stiffness (compliance−1), impedance (mobility−1)
and dynamic mass (accelerance−1) [4].

The influence of many variables such as thickness, curvature, material properties,
density and elastic constants on the instrument’s vibration modes can be demonstrated
via modal analysis numerical simulations that provide significant insights to experimental
modal testing. Mathematical modal analysis is mainly performed via the finite element
method (FEM) and the finite difference method (FDM). Representative works which address
the fundamentals of the modeling and simulation of continuous vibrating elastic systems
by the FEM can be found in [15,16].

3. Numerical Methods

Numerical methods are capable of simulating complicated processes, i.e., when the
material properties are anisotropic, viscoelastic or temperature-dependent, as well as
complicated geometries of dynamic structures, such as the geometries of string musical
instruments. The basic numerical methods used are the FEM, FDM and boundary element
method (BEM). The numerical methods have many advantages compared to the analytical
methods since the solution domain is divided into many smaller domains that are allowed
to have different values of physical properties and/or varying loading conditions.

The finite element analysis is based on approximate solutions to systems of partial
differential equations [17,18]. The modeling analysis divides the behavior of complex
structures into small elements. The FEM is a series of computerized numerical calculations
based on matrices. It is versatile due to its flexibility in modeling complicated geometries
when the domain changes, when the desired precision varies over the entire domain or
when the solution lacks smoothness [19,20]. During FEM preprocessing, the structure is
subdivided into a mesh (or grid) that, depending on the geometry, may consist of one-
dimensional line elements; two-dimensional area elements, such as triangles or rectangles;
or three-dimensional volume elements, such as regular or irregular tetrahedra or hexahedra
or other polyhedra. The solution is approximated using a collection of the so-called
shape functions, which may or may not lie in a regular arrangement. Moreover, the
numerical solution is usually approached using integral and variational methods. In
addition, the mechanical properties such as the density and elastic constants including
Young’s modulus, Poisson’s ratio and shear modulus are necessary, and even thermal
properties such as thermal conductivity and heat capacity may be needed, along with
proper boundary conditions.

The finite difference method (FDM) is capable of solving problems defined either in
one spatial dimension or over a simple geometry in two dimensions. This concerns all
string models, 1D tube models, bars and rectangular or circular percussion instruments.
In general, finite difference methods are used for regular grids. In FDM, the structure
is not divided into a mesh of elements, but rather discrete node points are identified on
the geometry and the equation system is solved for these points, considering differences
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with the neighboring points [21–23]. Therefore, the FEM formulation is more complicated
and demands more computational time. Its advantage is the greater ease of handling
boundaries. Moreover, the selection of the element geometry and element density in FEM
is very flexible, making it suitable for complicated geometries. Bader [24,25] successfully
performed 3D FDM simulations of the complete geometry of the classical guitar.

In musical acoustics, the BEM formulation is commonly used to calculate the sound
radiated by simulated musical instruments [26–28]. The BEM is a numerical computational
method capable of solving linear partial differential equations, which have been formulated
as integral equations. The integral equation is regarded as an exact solution of the governing
partial differential equation. The boundary element method attempts to use the given
boundary conditions to fit boundary values into the integral equation, rather than values
throughout the space defined by a partial differential equation. After fitting, the integral
equation is used again in the postprocessing stage to calculate numerically the solution
directly at any desired point in the interior of the solution domain.

Finite element analysis is ideal for predicting how musical instruments react to any
kind of force loads, vibrations and variations in environmental conditions (temperature,
relative humidity, etc.). The basic equation of motion solved for an FEM structural dynamic
analysis is as follows:

[M]

{
∂2U
∂t2

}
+ [C]

{ .
U
}
+ [K]{U} = {F} (1)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, {U} is
the displacement vector and {F} is the load vector. Ignoring damping and external forces,
for a harmonic motion in the frequency domain, Equation (1) results in a modal eigenvalue
problem of the following form: (

[K]−ω2[M]
)
[Φ] = 0 (2)

where [Φ] is the modal matrix, whose columns are eigenmodes and ω are angular eigenfre-
quencies.

4. FEM Studies on Soundboards of String Musical Instruments

The motion of soundboards (top plates) is essential in sound production. The sound-
boards are usually made from spruce wooden material in string musical instruments such
as violin, guitar and piano. This selection is justified due to the fact that the ratio of Young’s
modulus (of the strongest direction, along the grain) to density is very large. Like in most
woods, the elastic constants of spruce depend strongly on the direction, and in general, a
total of 27 different constants are required to fully describe its elastic behavior [5].

Contemporary instrument making is still based more on tradition than understanding,
and a definitive comprehensive scientific study that directly relates the instrument shape
with the vibrational properties is still nonexistent. It is worth noticing that the modal
frequencies (eigenfrequencies) of the free top plates are not directly related to the acoustic
properties of the complete instrument. However, according to instrument makers, the
soundboard’s modal frequencies are crucial parameters that decisively affect the selections
during the construction of the instrument. After identifying the problematic notes on a
particular instrument, the luthier can check the general modal map of the instrument and
identify the modes that provoke the problems. Moreover, the knowledge of the mode
shapes provides a guideline as to which areas of the structure should be targeted in order
to fix particular modes with minimal disturbance to other modes/frequencies [29]. This
section presents an overview of the FEM simulation studies focused on the soundboards of
stringed instruments.
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4.1. Bowed Stringed Musical Instruments

The violin is the most well studied bowed musical instrument in musical acous-
tics [30–32]. In recent years, there has been significant improvement in the knowledge of
the violin vibrational modes, which are responsible for the intensity and quality of the
instrument’s sound. This knowledge is derived from finite element simulations [33–36] and
experimental investigations [37–40]. Nevertheless, the physics of the bowed strings and
the complex shape and structure of the violin lead to many complications that are still the
object of ongoing research. The understanding and modeling of the acoustically important
vibrational modes of the violin and related instruments are still less well advanced.

Regarding the soundboards, there are many factors that affect their vibrational be-
havior, such as the geometrical characteristics (arching, thickness and distribution of
thicknesses), the material properties and the anisotropy and inhomogeneity of the mate-
rials. In the literature, after the pioneering experimental work of Hutchins [41] there are
various studies [42–48] that numerically study the violin free top and back plates, providing
valuable guidance to violinmakers on the aforementioned factors that influence the plate
frequencies and mode shapes before the final assembly on the instrument. Molin et al. [48]
investigated the influence of the overall plate thickness variation, local thickness variations,
arching height and material parameters, while experimental measurements of Chladni
patterns were used for comparison with the FEM results. Likewise, Bretos et al. [34] studied
the tuning of free violin plates and compared the numerical results with the experimental
results of Richardson et al. [49].

A notable study is that of Gough [50], who developed different models starting from
simple assumptions and then gradually added the complications of violin design. Hence,
the progressive evolution of the signature modes was charted, and the relative influence
of various contributory factors was evaluated. The various contributory factors that were
investigated concerned the influence of arching, elastic anisotropy, plate thickness, the
f-holes and the island area, extensional and rotational constraints, the sound post and the
bass bar. Representative results of increasing the plate thickness are reprinted from [50] in
Figures 1 and 2. Figure 1 demonstrates the computed frequencies of the first 16 modes of a
15 mm arched violin plate, for a wide range of plate thicknesses, plotted on a logarithmic
scale. Each color represents a mode, starting from mode #1 to mode #16. The #5/#2
frequency ratio is significant for octave tuning [50]. For the 15 mm arched plate, the
computed ratio falls from 2.97 for 1 mm, 2.46 for 2 mm and 2.11 for 3 mm to 1.86 for
4 mm thick plates. The results demonstrate that the average ratio of 2.3 for fine Italian
violins [51] may be reproduced by a uniform spruce plate thickness slightly less than
2.5 mm. Furthermore, the violinmakers are also aware of the dependence of the free plate
mode frequencies and shapes on selective graduation of plate thickness. Therefore, an
example of plate thickness proportional to the arching height rising, from 2 mm at the plate
edges to a maximum thickness at the plate center, was also presented. Figure 2 shows the
increment of the computed modal frequencies in relation to the midplate thickness.

Recently, Gonzalez et al. [52,53] demonstrated that the modal frequencies of the
violin soundboards can be predicted by an artificial intelligence neural network based
on their geometric parameters; furthermore, it is observed that this approach can be
successfully adopted by traditional violinmakers. Moreover, the studies of Lu [47] and
Kaselouris et al. [54] explored the possibility of using composite materials to substitute the
traditional wood material of the top plates. The advantage of using composite materials
lies in their minimum sensitivity to humidity and temperature changes which makes them
almost unaffected by the environment within which they are being played. Additionally,
composites are high-strength materials with great machinability in contrast to wood. The
results of both of these research studies showed that the vibrational behavior of composite
soundboards is significantly different from that of traditional wooden soundboards.
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with permission from [50]. Copyright 2015 Acoustic Society of America. 
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(without f-holes or bass bar) considering a geometric mean Young’s modulus. The dashed line
indicates the thickness dependence for a flat plate. Reprinted with permission from [50]. Copyright
2015 Acoustic Society of America.

Acoustics 2022, 4 FOR PEER REVIEW  6 
 

 

 
Figure 1. Influence of plate thickness on the free plate modes of a 15 mm arched violin top plate 
(without f-holes or bass bar) considering a geometric mean Young’s modulus. The dashed line in-
dicates the thickness dependence for a flat plate. Reprinted with permission from [50]. Copyright 
2015 Acoustic Society of America. 

 
Figure 2. The increase in modal frequencies of a freely supported 15 mm arched violin plate, as the 
thickness of the plate increases linearly with local arching height, from 2 mm at the outer edges to a 
maximum thickness at the center of the plate. The dashed lines show the modal frequencies for a 
plate of the same mass but with uniform thickness. The contours on the inset indicate the thickness 
at 1/3 and 2/3 maximum. The physical constants are the same as those used for Figure 1. Reprinted 
with permission from [50]. Copyright 2015 Acoustic Society of America. 

Figure 2. The increase in modal frequencies of a freely supported 15 mm arched violin plate, as the
thickness of the plate increases linearly with local arching height, from 2 mm at the outer edges to a
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1/3 and 2/3 maximum. The physical constants are the same as those used for Figure 1. Reprinted
with permission from [50]. Copyright 2015 Acoustic Society of America.
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Regarding other studies that concern bowed instruments, it is worth noting the work
of Wilczyński et al. [55] on a viola da gamba. The main objective of this numerical study
was to induce prestresses on the soundboard and to examine the differences between pre-
stressed and non-prestressed models. The main conclusions were that all the frequencies
decrease when prestresses exist, while most of the modes are different between models with
and without prestresses. Moreover, in the work of Bakarezos et al. [56], the vibration char-
acteristics of a traditional Cretan lyra soundboard were studied via FEM and experimental
ESPI measurements. The vibration amplitude distributions, the eigenmodes, obtained by
time average ESPI for each eigenfrequency were found to be in good agreement with the
computational results of the FEM simulations.

4.2. Plucked Musical Instruments

The guitar, acoustic or electric, is the most popular musical instrument in the world.
The classical guitar’s sound characteristics depend on the vibratory interaction of the
whole instrument with a specific string excitation. The soundboard is a crucial part for this
interaction, which to a large extent determines the guitar’s musical acoustic quality [5,57].
It was experimentally shown that the thickness and shape of the soundboard as well as
the characteristics of the braces, such as their number, shape and orientation, affect the
mechanical behavior of a guitar [57–59].

The vibrational behavior of a guitar plate as a function of the mechanical parameters
of wood was studied for a meaningful set of samples via the FEM in [60]. It was found
that the most influential parameters for the normal frequencies and the modes are the
Young’s moduli. The values of the computed eigenfrequencies strongly depended on
the variation of the transversal and longitudinal Young’s moduli. The authors concluded
that the determination of the precise values of Young’s moduli is crucial to study the
vibrational behavior. In [61], the influence of changing the relative humidity of air on
the mechanical properties of a guitar’s top plate was measured. Vibratory responses of
the plate were experimentally measured. To determine the connection between the shift
in natural frequencies and the changes in the wood’s elastic and shear moduli, an FEM
model of the plate was developed, and modal analysis was carried out. The variations of
the obtained results due to this wood–air interaction were considered responsible for the
modified vibrational behavior of the musical instruments. Shepherd et al. [62] modeled an
acoustic guitar soundboard by FEM using orthotropic material properties. The variability
of the wood properties was also considered including the effect of the moisture content.
The measured modes and the natural frequencies resulted in a good agreement with the
experimental measurements. Furthermore, an uncertainty analysis was performed using
the normal variance of the wood properties, based on values that have been reported in the
literature. The results of this analysis highlighted that the accuracy of the computational
results depends on the values of the material properties.

A notable research work of Torres et al. [59] studies the influence of two different bridge
configurations on the vibrations of the top plate of a classical guitar via detailed damped
simulations using the FEM, experimental harmonic analysis and visualization techniques.
The results of this work showed that a simple change in the structural configuration
noticeably affects the vibration patterns of the instrument. Such a representative result
is here reprinted from [59] in Figure 3. The simulated (top) and experimental (bottom)
operational deflection shapes of the top plate velocity without bridge, in its fourth resonance
peak excited with 0.035 N, are shown. A good agreement between the numerical and the
experimental top plate velocity distributions was found.
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the top plate velocity without bridge in its fourth resonance peak excited with 0.035 N. Reprinted
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Recently, Salvi et al. [63] analyzed the modal response of the free top plates of archtop
guitars via FEM and investigated the similarities of its mode shapes with those of similar
instruments, such as the violin and the classical guitar. Moreover, Viala et al. [64] demon-
strated, via numerical and experimental modal analysis and uncertainty quantification,
that the specific elastic parameters of the wood (in longitudinal and radial directions and
longitudinal–radial plane) mainly influence the dynamics of the soundboard, whilst the
relative humidity changes have a non-negligible impact.

4.3. Hammered Musical Instruments

The strings of the piano, which is the most characteristic hammered musical instru-
ment, are set into motion by a hammer impact. Strings and soundboard are connected
through bridges and the soundboard is stiffened via a set of ribs [5]. The piano soundboard
transforms the string vibration into sound. These vibrations are essential for the sound
characteristics of the instrument. One of the first FEM models of a piano soundboard
was developed by Kindel and Wang [65]. The piano structure was modeled via beam
elements, while vibration modes up to 130 Hz were compared with modal experiments.
Berthaut et al. [66] developed a 2D FE model using shell elements in-plane and performed
experimental modal analysis on a grand piano soundboard. The comparison of numerical
and experimental measurements demonstrated a satisfactory correlation up to 250 Hz.
A simplified FE model of the soundboard by Moore and Zietlow [67], along with ESPI
experimental measurements, demonstrated that the vertical force exerted by the strings
on the soundboard has a non-negligible effect on the natural frequencies of the lowest
modes, while it has negligible effects for mid/high frequencies. An FE model of the piano
soundboard was developed by Mamou-Mani et al. [68] to study the effects of the tension of
the string (downbearing) on its vibration, considering the ribs, the bridges and the crown.
Prestress calculation was considered. Results were presented in the frequency range for
mode resonances up to 450 Hz. A simple phenomenological law was derived to describe
the evolution of eigenfrequencies with downbearing, including the initial crown. A vibroa-
coustic study of Ege et al. [69], combining FE analysis and modal analysis, concluded that
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below 1 kHz, the soundboard vibrates similarly to a homogeneous plate, while above that
limit the structural waves are confined by the ribs. Recently, Corradi et al. [70] studied
the manufacturing processes of the grand piano soundboard via FEM and modal analysis.
Three stages of manufacturing were investigated: (i) freely suspended soundboard prior
to the gluing of the bridges, (ii) freely suspended soundboard including the two bridges
and (iii) the soundboard attached to the piano frame. In order to pair the numerical and
the experimental modes, the modal assurance criterion (MAC) was adopted [70]. Repre-
sentative numerical and experimental results of stage (ii) are demonstrated in Figure 4.
The agreement between the paired numerical and experimental modes, in terms of the
natural frequency, the MAC value and the visual representation of the mode shapes, is
very satisfactory.
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5. FEM Studies of Assembled String Musical Instrument Box

The modeling of the whole body of a musical stringed instrument is a more complex
process which leads to high computational cost demanding simulations. In addition, the
number of the material parameter values increases, and accurate values of these numerous
different materials have to be assigned to each individual part of the instrument assembly.
Thus, an accurate computation of the derived normal modes demands a very sophisticated
modeling. In this section, literature studies on the vibration analysis of the assembled
instrument box are presented, while fluid–structure interaction simulations that couple the
top plate with the Helmholtz air resonance of the body cavity are presented in Section 6. In
Section 7, simulations of the radiated sound with FEM–BEM coupling are demonstrated.

5.1. Bowed Musical Instruments

Preliminary work to study the modal characteristics of a complete violin assemblage
with the Stradivari shape, via FEM modeling, was conducted by Knott et al. [33], while the
numerical results were validated via an experimental modal analysis [37]. Bretos et al. [34]
modeled the whole violin box, except the bridge, the neck, the fingerboard and the strings,
and the first 10 eigenmodes were calculated. An effort was made to establish relationships
between the vibrational behavior of the free plates and the assembled violin structure. The
structural parameters of the violin box, such as the thickness of the violin plate; the height,
distribution and change of the shape of the arch in the front plate geometry; and the status
of the bass bar and sound post, were investigated by Zhang et al. [71], for their influence on
the vibration patterns and frequency response of a violin box. The assembly of the model
was not full since the neck, the fingerboard and the strings were not modeled. To verify the
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results of FEM simulation, experiments to measure the vibration frequency response were
conducted. The FEM and the experimental results were found to be in good agreement.
The authors concluded that the response frequency increases when the height of the arch,
the thickness of the front plate, the prestress of the front plate or the contact stiffness of the
sound post increases. In a recent noteworthy study [72], the design variations of a Titian
Stradivari violin were explored via FEM modeling. The model is parametric; hence, its
design and material properties varied in both the frequency and time domains. The violin
soundbox model included the top plate with the bass bar and the f-holes, the bridge, the
back plate, the ribs, the blocks and the sound post, while the strings, neck and fingerboard
were omitted. Moreover, two mass-spring-damper oscillators were considered and attached
to the bass bar to incorporate the influence of vibrating components which are not included
in the model. The well-known signature modes of the soundbox were observed, namely
the A0, C-bout rhomboid (CBR), B−1 and B+

1 . In Figure 5 are shown representative results of
the simulated signature modes. The numerical results of the modal frequencies are found
to be in good agreement with the experimental results found in the literature [73].
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Figure 5. Simulated signature modes of the FE model, where the first row is for the top plate while
the second row is for the back plate. Videos and 3D files of each simulated mode are available to be
compared to the corresponding modes of Titian animated through the Polytec Scan Viewer; required
data and software are included on the Strad3D DVD [73]. Images used are courtesy of ANSYS,
Inc. Canonsburg, PA, USA. Reprinted with permission from [72]. Copyright 2020 Acoustic Society
of America.

The cello is a bowed musical instrument which is less studied in the literature.
Viala et al. [74] recently performed an eigenmode FEM analysis on an antique cello, con-
cluding that the geometric accuracy of the developed model highly affects the accuracy of
the simulation results of the antique cello model. This study concludes that the numerical
models can simulate the effect of the restorer’s and instrument maker’s decisions on the
instrument’s final dynamical behavior. This can be a starting point for a decision support
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numerical tool that would be highly applicable to the conservation, maintenance and
development of musical instruments.

5.2. Plucked Musical Instruments

Most of the studies on the plucked stringed instruments are focused on the guitar, and
traditional instruments are less studied. Pedrammehr et al. [75] studied the vibration of
the setar, a long-necked lute-type plucked Persian musical instrument, via FEM modeling
and simulations. The 3D CAD model of the setar assembly was created via 3D laser
scanning. The simulated mode shapes and natural frequencies of the setar structure were
validated with experimental modal testing. A notable study by Mansour [76] analyzed the
vibrational behavior of the setar by means of FEM and experimental modal analysis. A
coordinate measuring machine (CMM) was used to define accurately the geometry of the
soundbox. The developed FEM model considered structural details, such as the orthotropic
properties of the wood, the direction of the grains, the nonideal joints and the effect of the
preload of the strings. The CAD assembly of the soundbox of the setar is shown in Figure 6.
The experimental analysis was performed using a combination of impulse hammer and
laser Doppler vibrometer. In Figure 7, the comparison of representative experimental and
numerical results of the mode shapes and the natural frequencies is demonstrated. The
numerical results were found to be in good agreement with the experimental measurements
over a wide range of frequencies.
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Figure 6. Assembly of the soundbox where the different shades represent element groups with
different thicknesses. Reprinted with permission from [76]. Copyright 2015 American Society of
Mechanical Engineers (ASME).

Regarding guitar studies, Patil et al. [77] performed an FEM analysis to determine
an acoustic guitar’s natural frequencies and mode shapes, validated by an experimental
modal impact hammer test. Fleischer [78] studied the vibrational behavior of an electric
bass guitar via FEM analysis and experimental laser scanning vibrometry. The bridge of a
well-made solid-body bass was found to be less mobile than the neck. In contrast to the
acoustic bass guitar, the fingerboard and the nut of the electric bass were found to be the
terminations of greater vibrations.
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6. FEM Fluid–Structure Interaction Studies of Assembled String Musical Instruments

This section presents FEM fluid–structure interaction studies, where the modeling
of the resonance box of the instrument includes not only the wooden structure, but also
the air inside, which is modeled as having fluid properties. The governing equation of
the acoustic behavior of a confined acoustic fluid volume in the frequency domain is the
Helmholtz equation for time-harmonic waves:

∇2 p + k2 p = 0 (3)

where p is the acoustic pressure and k is the wavenumber. For vibroacoustic problems, the
boundary condition is described by the following:

∂p
∂n

= −iρωvn (4)

where n is the normal vector that points outside from the acoustic volume, ρ is the acoustic
fluid density and vn is the normal velocity.
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Most literature studies concern the guitar because it is a slightly less complex me-
chanical system compared to the violin. Similar to many string instruments, the guitar
resonance box has its air cavity connected to the outside by a hole, so that its dynamic
behavior interacts with the external environment. The lowest air cavity mode, which is not
coupled with the structure, is called the Helmholtz resonance and is denoted as A0. The
higher modes of the air cavity (named A1, A2, etc.) correspond to the stationary waves
inside it and are not harmonically related to A0 [79].

Elejabarrieta et al. [79] used the FEM on the air cavity of a guitar box, pointing out the
effect of the sound hole. This preliminary model considered the air fluid as being confined
in a rigid cavity with an orifice, the sound hole. The computed natural frequencies of the
guitar air cavity were compared to those of experimental works from the literature [80–82],
and good agreement was found. The same authors [83] studied the coupled modes of
the resonance box–air cavity system. The modeled wooden resonance box comprised the
top plate, the back plate, the bridge, the ribs, the edges and the blocks. The developed
numerical model allowed one to study independently the modal analysis of the wooden
structure and of the air inside the box, as well as the coupled modes of the resonance box–
air cavity system. An experimental modal analysis technique was applied to validate the
numerical results. The same research team [84] performed a numerical and experimental
study where the interior gas varied. Natural frequencies, modal patterns and quality factors
were determined when the box was full of either helium, air or krypton. The developed
numerical fluid–structure model [83] was applied to study the coupled modes of the three
different cases for the three different-in-density gases. One main conclusion was that
the type of fluid determines the modal patterns and frequencies of the whole resonance
box. In Figure 8, representative results of the calculated and measured coupled modes are
demonstrated. It can be observed that the experimental and calculated modes are similar
and appear in the same order. Furthermore, the authors concluded that the upper zone
of the resonance box remains motionless, regardless of the type of gas in the frequency
range analyzed. The literature also includes works that investigate the simulation of the
fluid–structure interaction of the Brazilian [85] and the Portuguese [86] guitar resonance
boxes (full 3D geometry). These results were validated against results from an experimental
modal analysis.

Moreover, a noteworthy study on vibroacoustic modeling and simulation of the
resonator of a Sarasvati veena, a South Indian stringed instrument, was recently performed
by Chauhan et al. [87]. The Sarasvati veena is a plucked string wooden lute, whose unique
timbre is characterized by the presence of nearly all harmonics, in the frequency range
of 0 to 2800 Hz. An FEM numerical fluid–structure modal analysis was performed on a
CAD model of the resonator top plate as well as the air cavity within the dome-shaped
structure. The numerical results were compared to experimental modal analysis results of
the veena resonator. In Figure 9, characteristic FEM and experimental results of the mode
shapes of the top plate are demonstrated. A good agreement was observed for the modes
presented in Figure 9a,c,h,j, while the modes presented in Figure 9f,g,k show a mismatch.
To investigate this mismatch, sound pressure radiated by a resonator for unit applied force
on the top plate was measured experimentally. Low pressure amplitudes were measured
for the frequencies where the mismatch between FEM and modal experimental results
was found. The authors concluded that this may justify the poor agreement for some of
the modes.
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7. FEM Studies of String Musical Instrument Resonance Box Interaction with the
Surrounding Air

Numerical studies of musical instrument box interaction with the surrounding air
are relatively more limited in the literature due to the very high computational needs.
An FEM–BEM preliminary study of guitar sound radiation was conducted by Brooke
and Richardson [88]. The structural mode shapes were determined via FEM, while the
resultant acoustic radiation was calculated via BEM. The computed radiation fields were
compared with measurements on real systems, providing satisfactory agreement. Pyrkosz
and Karsen [89] developed a vibroacoustic FE model for the Titian Stradivari violin. The
structural model was made from actual CT scans of the actual violin. To handle the
interior/exterior acoustic problem, an automatically matched layer (AML) property was
considered. This feature constructs the absorbing layer on the solver level by extruding the
boundary surface elements automatically [89]. The numerically predicted structural modes
were correlated with experimental data of a modal analysis, while the acoustic results were
compared to experimental sound radiation measurements. The vibroacoustic behavior
of the Titian Stradivari violin was accurately predicted. The computed structural mode
frequencies differed less than 5% compared to the experimentally measured modes. The
computed main acoustic mode (A0) of the Titian Stradivari differed less than 7% compared
to the experimental result. Recently, numerical simulations of the vibration mode of a
violin body and the sound radiated by it were performed via FE analysis carried out by
Yokoyama [90]. A microcomputed tomography scanner was used to create the instrument
geometry. The eigenmodes and sound radiation were calculated via an acoustic–structure
interaction module. Chatziioannou [91] developed an FE model of a reconstructed viola da
gamba. The calculated modal shapes were validated with the aid of Chladni patterns and
the ESPI experimental technique. The vibroacoustic simulation of the interaction between
the vibrating surfaces of the instrument and the surrounding air demonstrated that the
posited asymmetric instrument design may radiate sound more efficiently than a design
involving a symmetric top plate. Figure 10 shows representative input admittance and
acoustic efficiency results for the asymmetric and symmetric designs. It can be observed
that the mobility of the bridge is similar for both geometries and is slightly higher in the
symmetric case. However, the sound radiation is clearly higher for the asymmetric design
over the simulated range of frequencies.

Although a lot of progress has been made in the field, from the literature results
presented in Sections 4–7, it is evident that a detailed assembly including all the parts of the
full instrument geometry resonance box, the fluid–structure interaction and the interaction
with the surrounding air has not yet been developed and simulated. To the best of our
knowledge, a primary effort by adopting simplified approximations has been conducted
by Mansour et al. [92] for the setar more than 10 years ago. Although the modeling of
the soundboards of stringed musical instruments using FEM was initiated in the 1980s,
the modeling of the fluid–structure interaction was initiated in the 2000s and the vibroa-
coustic simulations were evolved significantly in the 2010s, the main reason that a full
model has not yet been accomplished may be attributed to the fact that only a few research
groups work exclusively on the study of stringed musical instruments globally. It is of
crucial importance that the researchers validate their simulation results with experimental
measurements, such as modal analysis and measurements of radiated sound pressure.
However, this is not always the case. The synergy of simulations and experimental mea-
surements is necessary to investigate thoroughly the complicated physical process of sound
production on stringed musical instruments and to obtain accurate results. Additionally,
the needs for computational resources to simulate such a complete computational assembly
model are extremely high, and the use of an efficient high-performance computer (HPC)
is mandatory.
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8. Conclusions

The main scope of this review is to present the state of the art of stringed musical
instrument FEM studies, categorized as follows: soundboard behavior, assembled musical
instrument box, fluid–structure interaction and resonance box interaction with the sur-
rounding air. From the 1980s to the present, numerical simulations based on FE models have
evolved to become valuable tools for improving our understanding of the fundamental
physical processes that occur in stringed musical instruments.

Most of the published research work is focused on the vibrating behavior of the
soundboards of the stringed instruments. Although the modal frequencies of the free
top plates are not directly related to the acoustic properties of the complete assembled
instrument, the soundboard’s modal frequencies are crucial parameters that decisively
affect its final performance, according to the manufacturers. The numerical results are
usually validated by experimental modal measurements. The violin is the most well studied
bowed musical instrument. However, the physics of the bowed strings combined with the
violin’s complex geometry and material structure leads to many complications that are still
of high research interest. Another common difficulty of the modeling process stems from
the fact that accurate values of numerous different material parameters, such as Young’s
moduli, density and shear moduli, need to be included in the numerical models.

The modeling of the whole body of a musical stringed instrument is a much more
complicated process that demands high computational resources. Moreover, due to the
increase in the number of the modeled, parts the uncertainty of the values of the material
properties increases significantly. For FEM studies of fluid–structure interactions of the
complete instrument assembly, most studies found in the literature in the last two decades
concern the guitar, which is a slightly less complex mechanical system compared to the
violin. In the last decade, studies for lute-type stringed instruments such as the setar and
the Sarasvati veena emerged.

Moreover, numerical studies of the musical instrument box interaction with the sur-
rounding air are relatively more limited in the literature due to the extremely high compu-
tational needs. The numerical results are usually validated by measurements of radiated
sound pressure. An FEM–BEM study of the sound radiated from a soundboard of a musical
instrument is a highly time-consuming task, and the difficulties are even greater if the
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whole assembly and the fluid–structure interactions are also modeled. Thus, a detailed 3D
FEM model including all the parts of the instrument’s geometry, the resonance box and the
air enclosure, also being surrounded by air and able to compute the fluid–structure interac-
tions, has not yet been developed. The FEM modeling and the simulation of such a highly
accurate and precise model is the future goal. The synergy of simulations and experimental
measurements is more than necessary to investigate thoroughly the complicated physical
processes of sound production on stringed musical instruments to obtain accurate results
and achieve the goal.
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