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Abstract: Ultrasonic testing of polycrystalline media relies heavily on simulation of the expected
signals in order to detect and correctly interpret deviations due to defects. Many effects disturb
ultrasonic waves propagating in polycrystalline media. One of them is scattering due to the granular
microstructure of the polycrystal. The thus arising so-called microstructural noise changes with grain
size distribution and testing frequency. Here, a method for simulating this noise is introduced. We
geometrically model the granular microstructure to determine its influence on the backscattered
ultrasonic signal. To this end, we utilize Laguerre tessellations generated by random sphere packings
dividing space into convex polytopes—the cells. The cells represent grains in a real polycrystal. Cells
are characterized by their volume and act as single scatterers. We compute scattering coefficients
cellwise by the Born approximation. We then combine the Generalized Point Source Superposition
technique with the backscattered contributions resulting from the cell structure to compute the
backscattered ultrasonic signal. Applying this new methodology, we compute the backscattered
signals in a pulse-echo experiment for a coarse grain cubic crystallized Inconel-617 and a fine grain
hexagonal crystallized titanium. Fitting random Laguerre tessellations to the observed grain structure
allows for simulating within multiple realizations of the proposed model and thus to study the
variation of the backscattered signal due to microstructural variation.

Keywords: microstructural noise; grain size distribution; model fitting; Laguerre tessellation

1. Introduction

Metallic alloys tailor-made for extremely demanding applications like in turbine
blades are particularly expensive, as corrosion resistance and mechanical strength are
achieved using noble metals and applying sophisticated manufacturing methods. Hence,
it is essential to keep the manufacturing process stable and to ensure the construction
elements to be defect-free and long-lasting.

Ultrasonic testing is a non-destructive testing technique particularly popular due to
its high penetration depth compared to other non-destructive methods like Eddy current,
magnetic particle inspection or X-ray based ones [1]. Moreover, ultrasonic testing can
be conducted using mobile devices. These two properties enable for instance inspection
of thick and very large metallic components like ship propellers in place [2]. However,
ultrasonic testing relies heavily on correct interpretation of the measured signals. This work
contributes to improving this interpretation by quantifying the so-called microstructural
noise due to scattering of ultrasonic signals by the granular microstructure of metal alloys.

Metal alloys and many ceramics feature so-called polycrystalline microstructures
consisting of grains defined by their local crystallographic orientation [3] and size [4,5].
Ultrasonic waves are scattered at grain interfaces [6]. As a consequence, ultrasonic signals
measured in a polycrystal comprise all echos caused by the microstructure. This hampers
the detection of defects due to overlap of many echos.
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A wave is attenuated in the medium in which it propagates [7]. The scattering at grain
boundaries introduces a flux of energy from the propagating wave and thus contributes to
attenuation [8]. Truell et al. [7] describe the relations between scattering and attenuation in
complex media formally:

“The term “attenuation” is used throughout to mean energy losses (as
measured by amplitude decay) arising from all causes when ultrasonic waves
are propagated through a solid medium. These “total” losses can be classed
broadly as scattering and absorption arising from the intrinsic physical character
of the solid under study, as well as diffraction, geometrical, and coupling losses.”

There have been a variety of attempts to quantify the scattering caused by microstruc-
ture, starting with very simple microstructural models. Truell et al. [7] and Ishimaru [9]
define the scattering cross-section of a volume element as observed scattered power flux
density along a spatial direction. According to this definition, Truell et al. [7] calculate
normalized cross-sections for a variety of examples where a homogeneous isotropic sphere
is embedded in a homogeneous isotropic matrix, as for example a magnesium sphere
embedded in stainless steel.

Rose [10] captures microstructural noise in the context of scattering in polycrystals
by placing point-shaped scatterers with random scattering coefficients at random spatial
positions. This strategy is further pursued in [11,12]. Microscopic inhomogeneities in
a polycrystal are thus captured using prior knowledge about the number of scatterers,
while their relative positions are ignored. Hirsekorn [13] describes scattering in a system
of closely packed scatterers as a function depending on scatterers’ volume and stresses
the need for ultrasonic scattering simulation methods using an explicitly given system of
closely packed scatterers as theoretically anticipated.

More recently, the granular microstructure of polycrystalline materials is modeled
by spatial tessellations [14–21]. Ultrasonic wave propagation is simulated in extruded
2D [22] or just 2D [23] tessellations only, even in rather recent publications. Ryzy et al. [24]
and Van Pamel et al. [25–27] simulate ultrasonic wave propagation in truly 3D structures.
Both groups apply NEPER [28] to first generate 3D Poisson Voronoi tessellations and then
regularize them by shifting the cell generators. In [27], even an exponentially decaying
two-point correlation function as assumed in analytical models is derived that way. Subse-
quently, displacement fields are computed in finite element mesh (FEM) representations
of the regularized cell systems. To this end, Van Pamel et al. [25–27] use the GPU based
FE software POGO [29], while Ryzy et al. [24] rely on the commercial software package
PZFLEX (Weidlinger Associates Inc., Washington, DC, USA). Despite the computational
load, in [27], the displacements are calculated for a system of more than 10,000 cells. How-
ever, the tessellation models are not fitted to an observed real polycrystalline microstructure.
Thus, material specific behavior is restricted to the mean cell or grain size and usage of the
respective elastic material constants.

We describe a complete simulation workflow for simulating the microstructural noise
caused by the grain structure of the investigated material. More precisely, our simulation
accounts for the spatial and size distribution of the grains. We model the microstructure
including the scatterer volumes, simulate backscattering from the entire microstructure,
and compute time domain signals. We make heavy use of the Born approximation of the
scattering field when it is small compared to the incident field. This assumption holds in
our case of microstructural noise, as long as the wavelength of the propagating wave stays
larger than the scatterers’ dimensions.

Stanke and Kino [8] developed a unified theory for elastic wave propagation in
polycrystalline materials accounting accurately for microscopic inhomogeneities in the case
of time-harmonic elastic waves, in particular phase velocity variations and attenuation due
to scattering. The polycrystal is represented by the geometric correlation function.

We combine the scattering theory from [8] with an explicit spatial microstructure
model as used in [5] to simulate the backscattered transient ultrasonic signal. To this
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end, we use microstructural information from light-microscopy and diffraction computed
tomography. Both techniques are destructive in the sense that samples need to be cut
and further prepared to obtain as detailed microstructural information as needed here.
Based on the quantitative geometric information thus derived, we fit microstructure models
specifically to the considered materials. More precisely, we derive a virtual representation
of a polycrystalline single-phase alloy as a realization of a random tessellation model.
The cells of the tessellation represent the grains and cell volumes follow the grain volume
distribution observed in the real material. In enlarged volumes, generated from the fitted
tessellation model, we compute the backscattering contributions of all cells, superpose
them in Fourier space, and transform the power spectrum back into time domain.

We apply the model based spectral simulation approach to a cubically crystallized
Inconel-617 observed in light-microscopic images of planar sections through the microstruc-
ture and a hexagonally crystallized titanium given as fully three-dimensional X-ray diffrac-
tion computed tomography data set. We model both alloys as a single-phase polycrystal.
The titanium features fine grains, while the Inconel’s microstructure is coarse. We expect
our study to contribute to a deeper understanding of the relation between material depen-
dent 3D microstructure and the ultrasonic wave propagation. This contributes to better
interpretation of measured ultrasonic signals.

This paper is organized as follows: In Section 2 we describe the general virtual
experiment. We summarize the needed scattering theory (in Section 2.1) including the
geometric correlation function (in Section 2.1.1) and scattering coefficients (in Section 2.1.2).
Section 2.2 is dedicated to modeling the single-phase polycrystalline microstructures using
random Laguerre tessellations (in Section 2.2.1) with log-normally distributed grain volume
(in Section 2.2.2) and fitting the model to real microstructures (in Section 2.2.3). In Section 2.3,
we close the gap between the fitted microstructure model and computing of ultrasonic
signals in its realizations. In Section 3, we model the microstructures of the Inconel-617 (in
Section 3.2) and the titanium (in Section 3.3). Section 4 summarizes our findings including
microstructure model parameters and ultrasonic signals for the Inconel-617 (in Section 4.1)
and for the titanium (in Section 4.2). Results and future topics are finally discussed in
Section 5, followed by the conclusion in Section 6.

2. Methods

We perform a virtual ultrasonic pulse-echo-test in an explicitly given 3D microstructure
generated by a stochastic microstructure model as sketched in Figure 1. The microstructure
model’s parameters are determined by fitting to the grain size distribution observed in
images. Using the found model parameters, we generate representative realizations of
the model. In these 3D microstructures, we finally simulate numerically the ultrasonic
testing by the pulse-echo-technique as sketched in Figure 1. We do not simulate the
back wall response. Instead, we compute the backscattered contribution from the entire
microstructure for each realization of the model. We superpose the response signals in
frequency domain yielding a spectrum. Finally, we apply the Fourier transform resulting
in a time-domain signal. Altogether, a set of 3D microstructures leads to a corresponding
set of time-domain signals.

This paper devises a method for computing ultrasonic microstructural noise based
on a geometric model of the investigated polycrystalline material. More precisely, we
simulate scattering due to individual grains. Note that this is not the same as the so-called
grain noise well-known from ultrasonic experiments. The difference is due to the virtual
experiment being still much simpler than the real one as it does not capture at all multiple
scattering—a non-negligible source of microstructural noise in real ultrasonic experiments.
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(a) general setup (b) backscattering

Figure 1. (a) Experimental setup assumed throughout including the particular choice of the global
Cartesian coordinate system with top-down z-axis. The transducer is both transmitter and receiver for
longitudinally polarized waves. In (b), dots mark the centers of the cells visualized in (a). The entire
microstructure contributes to the received backscattered signal.

We compute the wave propagation for two microstructures, i.e., Inconel-617 and tita-
nium, with strongly varying properties, see Table 1. ASTM classifies microstructures by
average grain diameters observed in 2D micrographs [30]. According to this classification,
Inconel-617 is class no. 2 (0.185 mm) and titanium class no. 8 (0.022 mm). Scattering coeffi-
cients are computed for nickel, too, to compare with [13,31]. Due to lack of microstructure
data, we do not fit a model but calculate the spatial scattering function based on the effective
diameter from [13,31], only.

We model the propagating wave as a planar one, as indicated in Figure 1. That is,
the wave is constant in a plane perpendicular to the propagation direction.

Table 1. Elastic constants of the three considered alloys. Nickel [13] and Inconel-617 [32] feature face
centered cubic (fcc) single crystal structures and titanium [33] a hexagonally closely packed (hcp) one.
The material specific density $ represents the material in both conditions.

Single Crystal Polycrystal Density
C11 C12 C13 C33 C44 λLamé µLamé $ Featured

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [ g
cm3 ] in Section

nickel 250 - - 160 118.5 - - 8.905 Section 2.1.2

Inconel-617 243.3 - - 163.05 134.3 134.5 82.9 8.36 Sections 3.2 and 4.1

titanium 160 66 181 90 46.5 76.17 43.39 4.51 Sections 3.3 and 4.2

Our workflow is sketched in Figure 2. There are three steps to be taken: First, the trans-
ducer as well as the transducer’s bandwidth are discretized according to the sampling
theorem [34]. The required parameters are listed in the upper left box of Figure 2. Also
in the first step, the microstructure model is fitted and representative realizations are gen-
erated, see the right upper boxes. In the second step, the displacement field at scatterers’
positions due to wave propagation in momentum space is computed. Finally, in the third
step, we transform the signal into the time domain using the Fast Fourier Transformation.
Note that the scheme in Figure 2 is already specialized to modelling the microstructure by
Laguerre tessellations generated by random packings of hard spheres.
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Figure 2. Proposed workflow.

2.1. Scattering Theory

The ensemble average of a physical quantity is the mean of this quantity over a
state of the considered system [35,36] with the region or time interval of averaging being
comparable to the slot when or where the observed system changes its state. Scattering
effects due to local microstructural inhomogeneities vary with grain size and orientation,
and thus have to be captured at the scale of the grains. The scattered energy densities for
a certain volume of a particular medium can be derived from the microscopic position
dependent material characteristics like single crystal elastic constants and density and the
ensemble average.

Ensemble averaging for ultrasonic propagation in polycrystalline materials has been
used for a long time, see e.g., [37–39]. Here, we follow the idea of Hirsekorn [13,40] and
investigate the effects of closely packed scatterers. In [13], the elastodynamic equation of
motion is solved assuming small deviations due to microstructural variation. This variation
is captured by modelling the microstructure as a system of closely packed scatterers
exposed to the propagating ultrasonic wave. The scattered energy flux relates the frequency
dependent time harmonic displacement field for one vibrating cycle and the material
specific stress tensor, see [7] for more details.

The Born series [41] for the propagating wave yields an approximation of the resulting
displacement field. Material dependent parameters like size and orientation distribution of
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the grains are accounted for by the geometric correlation function. Ensemble averaging
is applied to the Born series terms. Finally, the energy flux is derived as an infinite sum,
time averaged over one vibration cycle. The n-th order Born approximation of energy
flux is the corresponding n-th partial sum, n = 0, 1, . . .. It represents the incident and
scattered waves’ interaction with the microscopic inhomogeneity of the material. Hirsekorn
uses the lowest non-zero order Born approximation to derive an analytical expression of
the ensemble averaged total energy flux due to scattering waves for both, incoming and
outgoing waves [13]. Thus, using this approach, only first-order scattering events are taken
into account, no multiple scattering. The sum of outgoing and incoming waves equals zero
due to the conservation of energy [13]. Here, we consider the outgoing waves, only, as we
aim at revealing the backscattered wave contributions.

2.1.1. Geometric Correlation Function

Ensemble averaging in polycrystals incorporates microstructural features by multiple-
point correlation functions of the local crystal orientations. In order to be feasible, ap-
proximations use a variety of simplifications, e.g., only 2-point or pair-correlations. If the
orientations of grains are assumed to be independently distributed, then the 2-point ori-
entation correlation boils down to the orientation distribution function multiplied by
the geometric 2-point correlation—the probability of two points falling into the same
grain [42,43]. The latter depends exclusively on the distance of the considered points if the
structure is macroscopically homogeneous and isotropic.

Stanke and Kino [8] incorporate the 2-point correlation function W(r) into their unified
theory of elastic wave propagation assuming it to decline exponentially: W(r) = exp

(
−r/¯̀),

where r is the distance of a point pair and ¯̀ is the mean chord length of the grains, also
called mean free path length or correlation distance. This simple shape of the orientation
correlation is convenient yet not realistic, see [44,45] and references therein. Following [8],
Hirsekorn [13,40] derives from ¯̀ the effective volume Veff of a scatterer as

Veff =

π∫
ψ=0

2π∫
θ=0

∞∫
r=0

exp
(
− r

¯̀

)
dr dθ dψ = 8π ¯̀3.

Roughly speaking, Veff can be interpreted as the volume that scatters if the correlation
length is ¯̀. Plugging in Veff into the Born approximation yields the scattering coefficients
reported in [13].

We aim at emphasizing the contribution of individual grains to microstructural noise.
Thus, we follow [13,40] in treating the grains as homogeneous and completely independent
scatterers. However, we observe the effective scatterers’ volumes Veff directly as the cell
volumes in our tessellation model realizations. The effective diameter deff of a cell or grain
is derived as the diameter of the sphere of volume Veff

deff = (6/πVeff)
1/3. (1)

2.1.2. Spatial Scattering Function

Evaluating the second order term of the Born approximation and utilizing Equation
(1) yields analytical representation of scattering coefficients η(ϑ, ϕ, ω) with ω = 2π f being
the corresponding circular frequency and f a fixed frequency. (ϑ, ϕ) ∈ [0, π]× [−π, π] are
the spherical polar coordinates of the local coordinate system, whereat η(ϑ, ϕ, ω) maps the
scattering coefficients along spatial directions around a scattering volume Veff. Thus, we
call this analytical representation of scattering behavior spatial scattering function.
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The following notation is used throughout: Denote by kP, kS the wave numbers for the
pressure (P) and shear (S) waves, respectively. The subscript is made of incoming�outgoing
wave, which is either pressure or shear, respectively. The spatial scattering functions are:

ηP�P(ϑ, ϕ, ω) =
k8

Pd3
effπ

3√
6(4π$ω2)

2
1(

1 + k2
P(1 + cos ϑ)

d2
eff

2
3√

6

)2

(
A2 cos4 ϑ + A1 sin4 ϑ + 2(A5 + 2A6) sin2 ϑ cos2 ϑ

) (2)

ηP�S(ϑ, ϕ, ω) =
k3

Pk5
Sd3

effπ
3√
6(4π$ω2)

2
1(

1 + (k2
P + k2

S + 2kPkS cos ϑ)
d2

eff

4
3√

6

)2

(
A6(2− sin2 ϑ) + A4 sin2 ϑ + (A2 + A1 − 2A5 − 4A6) sin2 ϑ cos2 ϑ

) (3)

ηS�P(ϑ, ϕ, ω) =
k5

Pk3
Sd3

effπ
3√
6(4π$ω2)

2
1(

1 + (k2
P + k2

S + 2kPkS cos ϑ)
d2

eff

4
3√

6

)2

(
A4 sin4 ϑ sin4 ϕ + A6(sin4 ϑ cos4 ϕ + cos4 ϑ)

+2(A9 + 2A10) sin2 ϑ cos2 ϑ cos2 ϕ

+2(A7 + 2A8) sin2 ϑ sin2 ϕ(sin2 ϑ cos2 ϕ + cos2 ϑ)
)

(4)

ηS�S(ϑ, ϕ, ω) =
k8

Sd3
effπ

3√
6(4π$ω2)

2
1(

1 + k2
S(1 + cos ϑ)

d2
eff

2
3√

6

)2

(
A8 + A10 + (A8 − A10) sin2 ϑ sin2 ϕ

+(A6 + A4 − 2A7 − 4A8) sin2 ϑ sin2 ϕ(sin2 ϑ cos2 ϕ + cos2 ϑ)

+2(A6 − A9 − 2A10) sin2 ϑ cos2 ϑ cos2 ϕ
)

(5)

with $ being the materials’ density. Equations (2)–(5) presume a specific incoming pres-
sure or shear wave given by wave vector (0, 0, 1)T in both cases, and either the pressure
polarization vector (0, 0, 1)T or shear polarization vector (1, 0, 0)T . This presumption sets
up the relation between single scatterers and the transducer, which is the source of the
incoming wave. As in [13,46], this models how single scatterers and the transducer interact.
Here, A1, . . . , A10 denote the ensemble averaged elastic constants from [40] listed in Table 2
below.

The spatial scattering functions are defined in intrinsic coordinates, with the origin of
the local coordinate system in the center of scattering volume Veff. In terms of Cartesian
coordinates (x1, x2, x3)

T = r(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ)T , the positive x3-axis of the local
coordinate system is aligned with the positive z-axis of the global coordinate system.
Figure 3 shows the spatial scattering function for a single scatterer in nickel (see also
Table 1). In the following, we use Cartesian coordinates and the base unit mm−1 in all
graphical representations of the spatial scattering functions.

In [13], the normalized scattered wave coming from a point in the material is plotted
in two dimensions, in [31] the same is done for the normalized scattered wave coming
into a scatterer. These quantities depend however on all three spatial directions. We
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therefore visualize the normalized scattered wave coming from a scatterer from [13] in
three dimensions.

Table 2. Ensemble averaged elastic constants (in GPa2) as used for the calculation of backscattering
coefficients [40].

Abbreviation Ensemble Averaged Elastic Constants Nickel Inconel-617 Titanium

A1 〈(C′1133)
2〉 370.44 608.15 39.86

A2 〈(C′3333)
2〉 658.55 1 081.12 30.96

A4 〈(C′1233)
2〉 205.80 337.86 29.56

A5 〈C′1133C′3333〉 −329.27 −540.58 −17.84
A6 〈(C′1333)

2〉 411.59 675.72 7.14
A7 〈C′1113C′2213〉 −102.90 −168.93 −12.71
A8 〈(C′1213)

2〉 205.80 337.86 15.53
A9 〈C′1113C′1333〉 −308.69 −506.79 3.79
A10 〈(C′1313)

2〉 370.44 608.15 21.16

(a) ηP�P (b) ηP�S

(c) ηS�P (d) ηS�S

Figure 3. Spatial scattering functions η(ϑ, ϕ, 2π 10 MHz ) for a single scatterer of size deff = 54.5 µm
in nickel. For every unit vector (x1, x2, x3) = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ), the function value
η(ϑ, ϕ, 2π 10 MHz ) is represented here as the length of the vector in the corresponding direction.
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To summarize, we model each grain as a cell contributing by its volume Veff to the
backscattered ultrasonic signal. The cell’s orientation is accounted for by the ensemble
averaging. The Born approximation relies on a macroscopic isotropy of the microstructure.
That means, in all further steps, cells do not have a specific orientation anymore. Note
however, that our workflow in principle carries over to modelling the orientation and its
scattering effect, too.

2.2. Geometric Modelling of Polycrystalline Microstructures

There is a wide variety of geometric characteristics describing spatial size and shape
of grain systems. A basic and in some sense complete system of characteristics for the
grains are the intrinsic volumes or Minkowski functionals [47]. Ohser’s algorithm allows to
estimate them efficiently based on 3D image data [48]. For the titanium, we use the volume
V, and the isoperimetric shape factor

s = 6
√

πV/S3/2 (6)

derived from volume and surface area S. This dimensionless index, often called sphericity,
is normalized such that it attains the value 1 for a perfect sphere. Moreover, 0 ≤ s ≤ 1 with
1 being reached by the sphere, only.

For the Inconel-617, we use the maximal Feret or caliper diameter of the 2D grain cross
sections—basically the longest Euclidean distance of two points in that grain.

2.2.1. Laguerre Tessellations

Random tessellation models are used to model the grain structure of polycrystalline
materials in many contexts [20,21,49,50]. Most common are Voronoi tessellations, dividing
space by assigning each point to the nearest generator. In Laguerre tessellations, this
well-known rule is generalized such that generator’s attraction is steered by an additional
weight [51]. The thus achieved higher flexibility allows for better control over cell sizes,
see Figure 4. Laguerre tessellations generated by random closed packings of spheres are a
standard model for rigid foams [52–55] and popular models for polycrystals [5]. Methods
for fitting in the statistical sense [52], reconstruction from 2D images [56] or cell centroids
and volumes in 3D [21], as well as approximation based on 3D image data [20] are available.

Figure 4. 2D illustration for the construction of a Laguerre tessellation. The cyan circles are the
generators with their weights, the red solid lines are the resulting faces of the Laguerre tessellation.

Here, we use Laguerre tessellations generated by random packings of spheres. We
use the force biased collective rearrangement algorithm [57], an effective modification
of [58] in the way described by [59,60]. This choice is motivated by the good control over
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the cell volume distribution this model allows. Note that Fan [5] builds on a collective
rearrangement packing, too [61,62].

For the sake of independence, we sketch the mechanism of the force biased packing
algorithm: At the beginning of the packing, spheres with an outer soft shell and an inner
hard core are placed in the container. The shells are allowed to overlap. Spheres push each
other away with forces depending on the overlap. In a collective rearrangement step, they
move according to the cumulative forces of repulsion. Then, the outer shells of the spheres
decrease while the cores grow up to the size that just prevents overlap of the cores. These
steps are iterated. The packing ends if the desired packing density—proportion of the
volumes of the sphere system and the container—is reached or the shells have disappeared
or the number of iterations has reached a predefined limit. See Figure 5 for the volume
rendering of a thus derived sphere system.

Figure 5. Volume renderings of force biased packings of 500 spheres in the unit window [0, 1]3.
Both with volume fraction VV = 52.1%. Left: with constant sphere volume V = 0.011. Right: with
log-normally distributed sphere volumes (µvs = −7.67 and σvs = 1.26).

The cell structure modeling the polycrystal is then derived from the sphere packing
by the Laguerre mechanism: We denote by xi ∈ R3 the center and by ri ∈ R the radius of
sphere i for i = 1 . . . NC. Then (xi, ri)

NC
i=1 is a set of generators with non-negative weights.

A point y ∈ R3 is assigned to the cell C(xi, ri) generated by xi if its weighted distance to xi is
smaller than to any other generator. The point y is assigned to the i-th cell if ‖xi − y‖2 − r2

i
is less than ‖xj − y‖2 − r2

j for all j 6= i. The wall between two neighboring generators is the
perpendicular bisector between their respective spheres, see Figure 4 for an illustration of
the mechanism.

That way, our random system of non-overlapping spheres divides the space into
convex cells C(xi, ri) with diameters deff,i of volume equivalent sphere as given by (1).
Additionally, we equip each cell with its center of mass mi.

2.2.2. Grain Size Distribution

Grain sizes in polycrystalline materials are usually assumed to be log-normally dis-
tributed [4,63]. In Laguerre tessellations generated by dense sphere packings, the cell size
distribution is dominated by the size distribution of the generating spheres [5,52]. We there-
fore model the sphere volumes vs according to a log-normal distribution. The probability
density function h of the log-normal distribution with parameters (µ, σ) is:

h(vs|µ, σ) =
1

vsσ
√

2π
exp

(
− (ln vs − µ)2

2σ2

)
.
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Expected sphere volume vs = VV/NV and the sphere volume standard deviation σvs are
then [52]

vs = exp(µ + σ2/2) , (7)

σvs = (exp(σ2)− 1) exp(2µ + σ2) . (8)

On the other hand

µ =
1
2

log
(

V2/(cv2
s + 1)

)
, (9)

σ =
√

log(cv2
s + 1) (10)

with cvs = σvs /V denoting the coefficient of variation of the sphere volume.
Note that the coefficients of variation of the resulting grain volumes cvg and the

generating spheres cvs surely differ with cvg > cvs. For very dense sphere packings as
in [5], the difference is small as the cells do not differ strongly from their generating sphere.
If the sphere packing density VV is lower, the difference grows. We use the cubic polynomial
in cvs fit to cvg for the densely packed case from [5]. See [52] for a more general discussion.

2.2.3. Fitting the Geometric Model Based on 2D Image Data

Model fitting solely based on 2D image data is an ill-posed problem. In [56] an
optimization based on a goodness-of-fit criterion for 2D slices is devised to avoid costly sim-
ulations of the full 3D Laguerre tessellations. However, [56] aims at exact reproduction of
the observed 2D cell structure. Here, we can use a simpler approach, closer to [50]: We sim-
ulate 3D tessellations, compare 2D slices cut from them with our 2D observations, and alter
the parameters to reduce the differences. This is repeated till the fit is sufficiently good.

First, we estimate the expected number of grains per volume NV . There is no straight
forward method to do so based on the observed grain number in planar sections NA in
case of Laguerre tessellations generated by sphere packings. However, for the special case
of a spatial Voronoi tessellation generated by a Poisson point process [47] (10.74) yields:

NA = 1.46 N2/3
V . (11)

Following the recommendation from [47] to use this approximation for the non-Poisson
case, too, we set the initial number of cells to the value which is expected for the Poisson
Voronoi tessellation case. The initial guess for the coefficient of variation of the sphere
volume distribution is set to 1.5 as this is about the center of the range cvg ∈ [1.09, 2.13] for
the grain volumes reported by [5].

We generate a force biased sphere packing using mean sphere volume VV/NV and
cvs = 1.5, derive the Laguerre tessellation, extract planar sections, and compare them with
the 2D micrographs based on the Feret diameters of the cells. We adjust the number of
spheres in the random packing based on comparison of the maximal Feret diameters and
iterate till the mean maximal Feret diameter (or the cell density) is met.

In the second step, the coefficient of variation of the sphere volumes cvs is fit by a
simple grid search. Again, we compute sphere packings and derive the corresponding
Laguerre tessellations. We take five section planes in each of the three coordinate directions,
measure the maximal Feret diameters, and compare the mean maximal Feret diameter
and the standard deviation of the maximal Feret diameters in these 2D sections with the
corresponding characteristics measured in the 2D micrographs. We finally choose the value
for cvs yielding the best agreement.

2.3. Simulation of Wave Propagation

We simulate the wave propagation in momentum space by calculating displacement
at scatterers’ positions, as drafted in Figure 1. First, we compute the displacement induced
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by a propagating wave. We discretize the surface covered by the transducer by Nt source
points yk ∈ R3, k = 1, . . . , Nt. After all, we evaluate the energy contribution along these
particular spatial directions, i.e., m− y. Here, uI ∈ R3 is the incoming polarization vector
and cI ∈ R the group velocity, both determined by vectors y and m. The displacement
uα ∈ R3 due to propagation of an elastic plane wave can be modelled at scatterers’ positions
as a superposition of all source points by

uα(m, ω) =
UI

4π

Nt

∑
k=1

uI exp
(
(−jω‖m− yk‖)/cI)
‖m− yk‖

(12)

with α indicating incoming pressure (P) or shear (S) waves, j the complex unity and UI

denoting the amplitude of the propagating wave.
The second contribution is the displacement due to scattering at scatterers’ position.

We define the latter following Equation (8) in [64], namely:

uα,sc(m, ω) =
UI

4π

exp
(
(−jω‖m− y‖)/cI)
‖m− y‖

(
uI +RSuR

S +RPuR
P

)
(13)

withRS andRP being the reflection coefficients. Thereby, all polarization vectors contribute
to the result—those of the incoming (I) as well as those of the reflected (R) waves. We adapt
Equation (13) by replacing the reflection coefficients by the scattering coefficients given
analytically in Section 2.1.2. This yields

uα,sc(m, ω) =
UI

4π

Nt

∑
k=1

exp
(
(−jω‖m− yk‖)/cI)
‖m− yk‖

(
uI + ηα�S(ϑk, ϕk, ω) uR

S + ηα�P(ϑk, ϕk, ω) uR
P

)
. (14)

The polarization vectors uR
α ∈ R3 of the reflected contributions are evaluated in

direction of the corresponding slowness vectors. Červený [65] defines the reflected slowness
vector as a function of incoming slowness vector and thus the reflected contributions are
governed by the corresponding slowness vectors i.e., sR

α (m− y). Also, the direction of
reflected slowness vectors governs the scattering coefficients. The scattering coefficients in
Equations (2)–(5) are derived as

ϑk = arctan
(

sy(m− yk)

sx(m− yk)

)

ϕk = arctan

 sz(m− yk)√
s2

x(m− yk) + s2
y(m− yk)


where the subscripts x, y, z represent the components of sR

α . In Equation (14), the angle and
frequency specific scattering coefficients depend on the single crystal parameters, but the
group velocity cI on the polycrystal’s material parameters.

2.3.1. Reciprocity Relations

We follow [66] in applying the reciprocity relations for computing the displacement at
the receiver’s surface. In [66], a formalism for scattering of ultrasonic waves at scatterers
is derived, in particular for the Born approximation. There, the received signal is defined
as the integral over the scatterer’s entire surface. Here, the displacement at the receiver
is expressed by the superposition of displacement velocity jω u and stress tensor σ at all
scatterers’ positions mi:

u(ω) =
jω
4

NC

∑
i=1

(
uα,sc(mi, ω) σ− uα(mi, ω) σ

α,sc

)
· n̂ , (15)
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where n̂ ∈ R3 is the normal to the scatterer’ surface. Note that, although we account for
one discrete point per scatterer, only, this scatterer is nevertheless assumed to be spherical.
Thus, the point first reached by the wave is the one with surface normal pointing towards
the transducer. Usually, transmitter and receiver are differentiated [66,67]. In our setting of
a pulse-echo experiment, the transmitter however equals the receiver.

2.3.2. Modelling of the Bandwidth

In general, wave propagation is a time-dependent phenomenon. In [68], transient
signals are computed based on the static continuous wave displacement method. We model
the bandwidth fm by

fm =

{
sin2

(
π

f− fl
fr− fl

)
, fl < f < fr

0 , else.

Basically, we assume a transducer with a mid-band frequency f = 2πω and model fm.
This yields the transducer specific harmonic displacement field in Equation (15) for a
bandwidth fl < f < fr. Figure 6 shows the variety of frequencies we use in the following
virtual experiments.

Figure 6. Simulated frequency bandwidth with left bound fl = 0.5 f and right bound fr = 1.5 f .

In the virtual experiments, we assume the ultrasonic transducer in pulse-echo tech-
nique emitting and receiving pressure wave, which mimics varying mid-band frequencies.
Finally, we transform the result into the time domain by MATLAB’s inverse Fast Fourier
Transform (FFT) [69,70].

2.3.3. Evaluation Tools

A microstructure model fit yields a predefined number of microstructure realizations
(cell systems) [5,52]. We aim at simulating ultrasonic specifics in these cell systems, as scat-
tering. In ultrasonic testing, scattering regimes are roughly characterized in terms of the
testing frequency f , the material dependent wave propagation velocity vα, and the effective
scatterer diameter deff, as follows [8]:

• the low-frequency Rayleigh regime π f
vα

deff � 1,

• the stochastic regime π f
vα

deff ≤ 1 and

• the high-frequency geometric limit π f
vα

deff > 1 .

We use the Born approximation to compute backscattered wave contributions, valid
in the low-frequency Rayleigh regime [13]. Accordingly, we set an upper fixed boundary
for the Rayleigh regime at 0.3, which yields

deff = 0.3
vα

π f
. (16)

By this, we assume that scatterers’ size remains within the Rayleigh regime and the modeled
scattering contributions are reasonable. Equation (16) corresponds to the hypothetical
boundary below which the cell’s diameter stays in the Rayleigh scattering regime. We
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denote this boundary by bR and check whether the microstructure realizations observe
this boundary.

3. Materials

We calculate the microstructural scattering for two metals—Inconel-617 and titanium.
The first is represented by 2D micrographs, only, whereas for the latter three-dimensional
diffraction computed tomography (DCT) data is available. The Inconel-617 alloy features
coarse grains with average 2D diameter 185 µm whereas the titanium’s microstructure is
much finer with just 33 µm. We extract random 2D slices along all three spatial directions
from the DCT data and compute the average of observed grain 2D diameters for this
particular comparison.

3.1. Computation Environment

First, we describe the environment used for the computations. According to the
workflow sketched in Figure 2, we choose the number of realizations of the stochastic
microstructure model. These can be generated in parallel. The tessellations are generated
on a machine with eight CPUs and 16 GB RAM.

The computation of the wave fields with and without microstructural scattering, is
the most time consuming step due to the high testing frequencies. These induce very fine
discretizations of the transducer surface and of the frequency bandwidth of the transducer.
Small grains increase the number of cells per considered volume and thus increase the
computation time, too.

The loop has to be traversed three times in order to cover all dependencies: The
backscattering contributions for each frequency step (bandwidth), each of the spatially
arranged scatterers, and all discretization points of the transducer. For these steps, in par-
ticular the ω-loop (red box in Figure 2), a C++ parallelization using openmp [71,72] is
executed on nodes with 16 CPUs and 60 GB RAM of Fraunhofer ITWM’s linux cluster [73].

3.2. Inconel-617

Inconel is the trade name for a group of nickel-chromium alloys with exceptional
strength, metallurgical stability, and oxidation resistance at high temperatures [74]. Inconel
alloys are therefore used e. g. in aerospace solutions, in gas turbines for combustion cans,
as well as for petrochemical processing and heat-treatment equipment. Here, we analyze a
macroscopically homogeneous sample of this alloy and treat its microstructure as a single
phase. Microstructural information is provided by a stack of micrographs featuring bright
grains separated by dark grain boundaries, see Figure 7.

Figure 7. Micrograph of the Inconel-617 under investigation, cell boundaries are emphasized by
etching. Micrographs from [32] courtesy of Thomas Schwender (Fraunhofer IZFP).

Based on these micrographs, the maximal Feret diameters of the cells were determined,
only, due to the notorious cell boundary reconstruction problem. In [32], isotropy of the



Acoustics 2022, 4 153

microstructure is deduced from the analysis of micrographs from three pairwise orthogonal
cutting planes. We observe altogether 666 cells in 64.5 mm2 yielding a 2D cell density of
NA = 10.3 mm−2 for the Inconel-617 alloy. The mean maximal Feret diameter of the 2D
grain sections is dFeret = 185 µm. About a third of the observed 2D grain sections are larger
than 200 µm, with the maximum even exceeding 700 µm. This emphasizes the coarse grain
structure of the Inconel-617.

3.3. Titanium

The second material we consider is a titanium. Microstructural information is ac-
quired by DCT [75] at Beamline ID11 of the European Synchrotron Radiation Facility
(ESRF), courtesy of Wolfgang Ludwig. DCT is a full-field X-ray microscopy technique
deploying synchrotron radiation and imaging spatially the grains and their crystallographic
orientation. More precisely, the reconstruction provides labeled 3D image data where each
voxel’s gray value is the number of the grain it is contained in as well as the full 3D orienta-
tion of each of these grains. For details see [75,76]. The imaged cylindrical sample has a
diameter of 518 µm, is 400 µm high, and contains 1397 grains. See Figure 8 for renderings
of the complete data set and a small cluster of grains.

(a) Complete data set (b) Cluster of grains

Figure 8. Rendering of the DCT image data of the titanium sample. The imaged cylinder has a
diameter of 518 µm and a height of 400 µm. In (a), boundary grains on top and bottom are removed
to emphasize the shape and packing of grains. Subfigure (b) shows a cluster of grains from this
data set. The grain colors are randomly chosen in order to visually separate neighboring grains and
their shapes.

As grains are separated in the 3D image already, no further image processing is
required, and grain shape and volume can be analyzed directly. Mean and standard
deviation of the grain volumes are 4.96 · 10−5 mm3 and 9.27 · 10−5 mm3, respectively.

4. Results

The following subsections yield simulation results for the two alloys and correspond-
ing microstructure model realizations.

4.1. Inconel-617

We first fit the microstructure model by determining the cell density and the cell
volume coefficient of variation based on the 2D micrographs by the method described
in Section 2.2.3. Subsequently, we generate an enlarged volume for computing the ultra-
sonic scattering.
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4.1.1. Microstructure Model

Grain volumes are assumed to be log-normally distributed. As reported in Section 3.2
above, we observe a grain density of NA = 10.3 mm−2 in the 2D micrographs of the Inconel.
Equation (11) then yields the spatial grain density NV = 18.80 mm−3, which in turn yields
1128 cells in a volume of 60 mm3. We therefore start with a first guess of 1200 cells.

We set the variation coefficient of the sphere volumes to an initial value of cvs = 1.5,
draw a sample of 1200 spheres from the log normal distribution according to Equation (10),
and pack them densely to obtain a volume fraction of 60 %. The corresponding 3D Laguerre
tessellation is computed and scaled to the sample volume. Planar slices are extracted and
analyzed, see Figure 9. To save computing time, we increase the number of cells by the
rather high number of 200 per step.

Figure 9. Visualization of the model fit for the Inconel-617. Left: Rendering of a realization of the
random Laguerre tessellation with overall 2000 cells in a cube of edge length 3.91 mm, and volume
60 mm3. Right: 2D sections compared with the micrographs. The cells are visualized by false
color mapping.

The realization of the fitted Laguerre tessellation comprises 2000 cells. The mean
maximal Feret diameter in the 2D slices is 185 µm. For fitting now also the grain volume
coefficient of variation cvg (see Section 2.2.2), we first choose the sphere volume coefficient
of variation cvs (see Section 2.2.3) by a grid search. More precisely, we choose cvs in the
interval [1.0, 3.6] and vary it with step size 0.1.

The best fit of the derived Laguerre tessellation is reached for the rather high value of
cvs = 3.5. The corresponding Laguerre tessellation has mean 3D cell diameter d̄cell = 329 µm
and cvg = 2.15. One of the original micrographs and a rendering of the Laguerre model
realization are shown in Figure 10. Figure 11 depicts the corresponding histogram of cells’
maximal Ferret diameter.
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Figure 10. One of the original micrographs of the Inconel-617 and a rendering of a realization of the
fitted Laguerre tessellation model with cvs = 3.5 and 2000 cells.

Figure 11. Histograms of maximal Feret diameters measured in the micrographs of the Inconel-617
and in 2D sections of realizations of the fitted Laguerre tessellation model with (cvs = 3.5 and
2000 cells) slices.

4.1.2. Model Based Scattering Investigation in Inconel-617

We generate now 10 realizations of the fitted model in a significantly enlarged volume
of V = (7.83 mm)3 = 480 mm3 instead of the 60 mm3 considered so far. We double
the dimension along each spatial directions to get N = 16 000 expected cells. Table 3
summarizes modeled microstructure. The effective diameters deff(Ci) of cells i = 1, . . . , N
as defined in Section 2.1.1 vary with the realization of the fitted model, as do the numbers
of cells, see Table 3.
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Table 3. Summary of the Inconel-617 microstructure model (cvs = 3.5 and 16,000 cells) realizations.

Realization std
i
(Veff(Ci)) min

i
(deff(Ci)) max

i
(deff(Ci))

Nr. (mm3) (µm) (µm)

1 0.0715 62 1039

2 0.0739 64 1131

3 0.0693 45 967

4 0.0693 57 1002

5 0.0723 60 1032

6 0.0701 62 896

7 0.0684 59 956

8 0.0729 59 1137

9 0.0669 61 860

10 0.0656 56 1099

mean 0.0700 58.5 1011

Figure 12 also emphasizes the variation of the realizations. The boxplots are to be read
as follows: The box includes 50% of cell’s diameters, lower and upper boundaries represent
the 25th and 75th percentiles, respectively, the central horizontal line the mean value,
and whiskers capture the remaining cells. More important, Figure 12 shows where the cell
sizes exceed the Rayleigh boundary bR. In particular, Figure 12 reveals that e.g., testing
frequency 5 MHz, is not an appropriate choice for the analyzed Inconel-617.

Figure 12. Effective cell diameters in ten realizations of the Inconel-617 microstructure model.
The solid and dashed horizontal lines correspond to the upper boundaries of the Rayleigh regime
for the pressure and shear waves, respectively. Colors code the frequency, see legend. Clearly,
the Rayleigh regime is violated in the 5 MHz case.

Figure 13 shows the spatial scattering function for a single scatterer with mean diame-
ter deff = 329 µm and the crystallographic structure of Inconel-617. We assume an elastic
wave propagating from top to bottom, which corresponds to the direction of the local
coordinate system’s positive z-axis. The general shape of the spatial scattering functions
remains similar, the local minima and maxima of the backscattering coefficient do not
change. The ratio however changes from forward to backward scattered contribution.
The frequency of the incoming longitudinal waves is set to 0.5 and 2.25 MHz, below and
above the Rayleigh boundary according to Equation (16). Note the scale difference of three
magnitudes for the spatial scattering functions w.r.t. testing frequency in Figure 13a,b.
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(a) ηP�P(ϑ, ϕ, 2π 0.5 MHz ) (b) ηP�P(ϑ, ϕ, 2π 2.25 MHz )

Figure 13. Spatial scattering function ηP�P(ϑ, ϕ, 2π f ) (in mm−3) for a single scatterer of size
deff = 329 µm, testing frequency (a) f = 0.5 MHz, deffπ f /vα = 0.15 and (b) f = 2.25 MHz,
deffπ f /vα = 0.68, respectively. Thus, according to Equation (16), for f = 2.25, we are in the
stochastic regime.

We compute the time-domain signals by simulating a frequency bandwidth as de-
scribed in Section 2.3.2, in particular Figure 6. Figure 14 shows the backscattered time-
domain signals for the 10 microstructure realizations of the Inconel-617 and assuming this
alloy’s characteristics. Contributions of every discrete transducer point being the source
points are collected, see Equation (12). The modeled transducer mimics a longitudinal
transceiver probe with a diameter of 6 mm for all frequencies. The signal is normalized,
which means it is divided by the number of source points. In Figure 14, the covered
distance corresponds to 25 times the double depth of the considered volume, i.e., 391.4 mm.
These figures emphasize the amplitude variation introduced by microstructural variation.
The backscattered signal has a significantly larger amplitude at 5 MHz with a difference of
10−13 to 10−16. Each microstructure realization leads to a time-domain signal as shown in
Figure 14.

4.2. Titanium

Here, we present the results for the titanium. The modelling approach is simpler here
as 3D microstructure data are available.

4.2.1. Model Fit

The mean and standard deviation of the grain volumes are used to fit the Laguerre
tessellation model. The mean and standard deviation reported in Section 3.3 yield the
coefficient of variation cvg = 1.86 for the volume of grains. We use the quadratic polynomial
from [5] to estimate the coefficient of variation for the sphere packing cvs = 2.34. The grain
number density is 20,146 mm−3. Figure 15a shows the empirical grain volume distributions
observed in the DCT image data and in realizations of the fitted model.
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Figure 14. Backscattered signals (indicated by ten arbitrary colors) for a sequence of testing frequen-
cies f = 0.5, 1, 2.25, and 5 MHz. The corresponding transducer is modeled by a circle with radius
3 mm, which emits and receives longitudinal waves.

(a) grains and cells volume distribution (b) grain and cell sphericity distribution

Figure 15. Histograms of the grain volumes of the titanium sample and realizations of the model
fitted to it (cvs = 2.34).
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We enlarge the volume eightfold, doubling the edge length in each of the three spatial
directions. This yields the expected number of cells N =0.860 mm3 20,146 mm−3 = 17,344
in a cube of edge length 0.95 mm. Next, we determine the parameters of the log-normal
distribution of sphere volumes—µ = −11.2 and σ = 1.3. We generate again ten realizations
of the stochastic model, see Table 4. The mean effective diameter of the cells in the derived
tessellations is 36.4 µm.

To validate the model, we compare the distributions of the sphericity (6) of the ob-
served titanium grains and the simulated cells, see Figure 15b. The Laguerre tesellation
cells tend to be more spherical than the real grains. This is not surprising. On the one hand,
cells from Laguerre tessellations generated by densely packed spheres are convex and
with high coefficient of variation tend to be regular, meaning more spherical [52]. On the
other hand, in the DCT data, we find also non-convex grains featuring rough surfaces, see
Figure 16 for an example. Non-convex cell shapes can be captured e.g., by generalized
balanced power diagrams [15,19]. However, this is beyond the scope of this contribution.

Figure 16. Rendering of a non-convex grain observed in the DCT data of the titanium sample.

Table 4. Results for the titanium model realizations (cvs = 2.34 and 17,344 cells).

Nr. std
i
(Ci) min

i
(deff(Ci)) max

i
(deff(Ci))

in 104(µm3) (µm) (µm)

1 5.540 5 79

2 5.607 7 81

3 5.888 7 83

4 6.426 7 108

5 5.908 7 88

6 5.615 6 81

7 6.509 7 112

8 6.496 7 104

9 5.922 7 91

10 5.897 7 81

mean 5.980 6.7 90.8
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4.2.2. Model Based Scattering Investigation in Titanium

Figure 17 illustrates, how much the realizations vary. The distribution’s overall shape
is very similar in the ten realizations, but the minimum and maximum values are less
representative for the distribution. Figure 17 shows also, where cell sizes exceeding the
Rayleigh boundary occur. For example bR, in particular for testing frequency 50 MHz,
shows that this frequency is a bad choice for this titanium alloy.

Figure 17. Effective cell diameters in ten realizations of the microstructure model for the titanium.
Clearly, the Rayleigh regime is violated in the 50 MHz case.

Figure 18 shows this difference as spatial scattering function for the mean effective
grain diameter (deff = 36.4 µm) for two frequencies. The scattering coefficients increase
significantly for frequency 30 MHz, by at least two orders of magnitude. Note, that the
chosen two frequencies (5 MHz in Figure 18a and 30 MHz in Figure 18b) represent different
scattering regimes assuming the same effective grain diameter. Figure 18a represents
scattering clearly in the Rayleigh regime with characteristic value kreff = 0.09, generated
by the frequency of 5 MHz, corresponding to wavelength 1.2 mm. In Figure 18b, for the
frequency of 30 MHz corresponding to wavelength 0.2 mm, the characteristic value is
kreff = 0.57, indicating scattering beyond the Rayleigh boundary.

(a) ηP�P(ϕ, ϑ, 2π 5 MHz ) (b) ηP�P(ϕ, ϑ, 2π 30 MHz )

Figure 18. Spatial scattering function ηP�P(ϕ, ϑ, 2π f ) (in mm−3) for a single scatterer size
deff = 36.4 µm, testing frequency (a) f = 5 MHz, deffπ f /vα = 0.09 and (b) f = 30 MHz,
deffπ f /vα = 0.57, respectively. Thus, according to Equation (16), for f = 30 we are in the stochas-
tic regime.
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Next, we compute the time-domain signals as described in Section 2.3. The correspond-
ing bandwidths are depicted in Figure 6. The transducer mimics a longitudinal probe with
a diameter of 6 mm for frequencies 5, 10, 20, and 30 MHz. The circular transducer emitting
the wave at 50 MHz frequency is modeled with a diameter of 3 mm. Figure 19 shows the
simulated backscattered time-domain signals. As expected, the amplitude grows with
increasing frequency. The computed signals cover 25 times double depth of the considered
volume, that is 43 mm.

Figure 19. Received backscattered signals in titanium for a sequence of testing frequencies f = 5, 10,
20, 30 and 50 MHz. The corresponding transducer is modeled as a circle with diameters 3 mm for
frequency 50 MHz and 6 mm for all other frequencies, which emits and receives longitudinal waves.
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4.3. Summary

We summarize here the achieved results. In both applications—Inconel-617 and
titanium—model fitting based on 2D and 3D image data, generating the dense sphere
packings consumes most computation time.

The spatial scattering function varies with testing frequency, incoming and scattered
wave modes with their respective propagation characteristics, and additionally the material
dependent parameters as effective grain diameter, elastic constants, and material density.
The range of the backscattering coefficients varies, too, and is largest for ηS�S. The general
shape of spatial scattering function stays similar for the cubic and hexagonal crystal systems
considered here (see Table 1 and Figures 3, 13 and 18), respectively. Distinctive points are
aligned for cubic and hexagonal crystallographic structures along the x1, x2, x3 axes or the
spatial diagonals in the local coordinate system, respectively. The scattering coefficient
graphs are symmetric w.r.t. the propagation direction of the incoming longitudinal wave
and both scattered waves, i.e., ηP�P and ηS�P, for cubic crystallized systems.

Regarding the scattering theory, an insight is that the scattering coefficients form a
closed shape which we call a spatial scattering function. That fact might be interesting
for other applications where the goal is the reconstruction of 3D ultrasonic signals. Also,
the spatial scattering function might play a role in development of multiple scattering
approaches, in the future. The direction dependent scattering contributions can be incor-
porated in signal analysis in order to reduce the present noise level introduced by local
microstructure. Of course, this approach requires the knowledge about the alloy’s structure,
i.e., the phases with their microstructural features. Anyhow, the scattering contributions of
incident and scattered waves are more pronounced in certain spatial directions [7], which
our analytical results confirm. The spatial scattering function might be exploited in order
to analyze the directivity’s maxima/minima. This insight allows for prediction of spatial
directions which are more prone or robust w.r.t. microstructural scattering in average.

The simulated backscattered time-domain signals are consistent if we compare the
change of frequency’s magnitude and the backscattered signal’s one. A change by one
magnitude of frequency—0.5 to 5 MHz for Inconel-617, and 5 to 50 MHz for titanium—
increases backscattering by three to four magnitudes. Figures 14 and 19 reveal strong
variation of the backscattered signals in both, phase shift and amplitude, for the same testing
frequency. Moreover, some microstructure realizations lead to a prominent backscattering
contribution for distinct frequencies. For the Inconel-617 (Figure 14), the violet and black
marked time-domain signals yield significantly stronger backscattering for 2.25 and 5 MHz
compared to 1 MHz. For the titanium (Figure 19), the black time-domain signal behaves
similarly for 30 and 50 MHz compared to the lower frequencies.

5. Discussion

We describe here a method for simulating backscattered wave contributions caused
by the microstructure of the polycrystal in which the wave propagates. In contrast to
previous studies, we fit a microstructure model to image data of real polycrystals. We
study two polycrystals—Inconel-617 and titanium—differing significantly in grain size
and crystallographic structure. The microstructures of both, the coarse-grained cubic
Inconel-617 and the fine-grained hexagonal titanium, are modeled by Laguerre tessellations
generated by sphere packings.

Model fitting consists of choosing mean and coefficient of variation of the sphere
volumes to meet the observed structures. This is comparably easy in the case where full 3D
information from X-ray DCT or 3D EBSD is available. However, the use of these imaging
techniques is still rather an exception while 2D micrographs are well-established and
accessible in quality assurance labs. For fitting models based on 2D images, parameters
have to be determined by systematically testing candidate values within a reasonable search
interval as described in Section 2.2.3. This is costly as many realizations of 3D models have
to be generated.
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Our spatial scattering function yields grainwise backscattered contributions. This is
the main difference to the analytical scattering theory from [13] predicting backscattering
as function of mean grain diameter. Instead, we reveal how a cell system with a certain
diameter distribution interacts with waves of varying frequencies. To this end, we simulate
a set of time-domain signals.

Our simulations rely on the Born approximation assuming an isotropic grain structure.
Inconel and titanium often feature a strongly anisotropic one. Thus, the Born approximation
can cause a potentially large error. However, the samples considered here are only mildly
anisotropic. Incorporating the anisotropy due to grain shape as well as anisotropy due to
crystallographic orientation properly is nevertheless subject of further research.

This work is motivated by the need for simulation techniques for ultrasonic wave
propagation including grain noise. Our method is theoretically well described, has however
not been validated by real experiments. To enable exactly this comparison, further work is
needed. To compare our simulation results to the experimental ones of [77,78] for titanium,
a modelling of microstructure with elongated grains is needed. For Inconel [32] , the virtual
experiment has to be extended by a reflection at a back wall of the sample. The major
obstacle is however the need for a microstructure model realization covering at least three
centimeters in each coordinate direction. This demands a tessellation with about one
million cells, 64 times larger than the current model realization with 16,000 cells. Thus,
the computations would take days if not even weeks. Finally, to allow for proper estimation
of detection probabilities, defect echos have to be simulated and compared to measured
ultrasonic signals.

Another point deserving further investigation is, how representative the simulated
ultrasonic signals are. The microstructures are modeled by random tessellations. Thus,
the realizations have to include enough cells to satisfy the law of large numbers for cell
statistics. This condition is well satisfied with altogether more than 100,000 cells in each of
the two model fits. However, we simulate just ten time-domain signals for each material.
This might not be sufficient to capture the variability of the ultrasonic signal.

We build on [13], where the grains are approximated as closely packed spherical
scatterers accounting for just single backscattered contributions. The scatterer’s shapes
and orientations are thus ignored for the moment. The effect of the shapes might how-
ever be non-negligible, in particular for coarse granular microstructures. We assume the
grains to be Laguerre tessellation cells, thus convex polytopes. The 3D DCT data of the
titanium nevertheless reveals non-convex grains. More elaborate models for polycrystalline
microstructures allowing for non-convex cells and curved grain boundaries have been
developed [14–21]. These could be used for ultrasonic simulation, too. The DCT data also
yields the crystallographic grain orientations. In order to exploit this structural information
in the ultrasonic simulations, the spatial scattering functions need to be reformulated.
In particular, the correlation function would have to account for eventually observed grain
orientation correlations.

This paper is one step forward towards simulation of realistic grain noise in ultrasonic
testing. Many more—most prominent considerable enlargement of the microstructure model
realizations, incorporation of grain orientations, simulation of multiple scattering—wait to be
conquered before simulated and experimental results can be compared quantitatively.

6. Conclusions

Ultrasonic testing is a popular, indispensable non-destructive testing technique. Its
proper use relies heavily on simulations in order to interpret the received signals correctly.
Simulation of ultrasonic wave propagation is therefore a vivid field of research.

This work focuses on polycrystalline materials and a method to account for the so-
called grain noise caused by scattering of the propagating wave by the grain boundaries.
Building on [13], we simulate backscattered wave contributions of the individual grains
forming the polycrystal. To this end, the grain structure is modeled by a Laguerre tes-
sellation model. Compared to the Voronoi tessellation used in previous attempts, using
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this more versatile type of model increases the effort for microstructure modelling con-
siderably, enables however to capture the real grain size distribution much better. This is
demonstrated here for two real metal alloy samples.

As discussed in Section 5 above, the method presented here needs generalizations
in many ways before yielding simulated ultrasound signals that can be quantitatively
compared to measured ones. We see it rather as a door opener towards realistic microstruc-
ture modeling in ultrasound simulation. We nevertheless achieved practically valuable
results, too. In particular, the explicit relation of testing frequency, cell sizes, and Rayleigh
boundary derived in Sections 4.1.2 and 4.2.2. The spatial scattering functions and their
shapes as shown in Figures 13 and 18 shed a new light on the structure signal interaction
and thus are of value on their own, too.

To summarize, we combined Hirsekorn’s [13] single scattering theory with explicit
microstructure modeling using Laguerre tessellations to make considerable progress on the
way to realistic grain noise simulation in ultrasonic testing.
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20. Petrich, L.; Staněk, J.; Wang, M.; Westhoff, D.; Heller, L.; Šittner, P.; Krill, C.E.; Beneš, V.; Schmidt, V. Reconstruction of Grains in
Polycrystalline Materials From Incomplete Data Using Laguerre Tessellations. Microsc. Microanal. 2019, 25, 743–752. [CrossRef]
[PubMed]

21. Lyckegaard, A.; Lauridsen, E.M.; Ludwig, W.; Fonda, R.W.; Poulsen, H.F. On the Use of Laguerre Tessellations for Representations
of 3D Grain Structures. Adv. Eng. Mater. 2011, 13, 165–170. [CrossRef]

22. Ghoshal, G.; Turner, J.A. Numerical model of longitudinal wave scattering in polycrystals. IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 2009, 56, 1419–1428. [CrossRef] [PubMed]

23. Shivaprasad, S.; Krishnamurthy, C.; Balasubramaniam, K. Modeling and simulation of ultrasonic beam skewing in polycrystalline
materials. Int. J. Adv. Eng. Sci. Appl. Math. 2018, 10, 70–78. [CrossRef]

24. Ryzy, M.; Grabec, T.; Sedlák, P.; Veres, I.A. Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media
with statistically equiaxed grains. J. Acoust. Soc. Am. 2018, 143, 219–229. [CrossRef]

25. Van Pamel, A.; Brett, C.R.; Huthwaite, P.; Lowe, M.J. Finite element modelling of elastic wave scattering within a polycrystalline
material in two and three dimensions. J. Acoust. Soc. Am. 2015, 138, 2326–2336. [CrossRef]

26. Van Pamel, A.; Sha, G.; Rokhlin, S.I.; Lowe, M.J. Finite-element modelling of elastic wave propagation and scattering within
heterogeneous media. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2017, 473, 20160738. [CrossRef]

27. Van Pamel, A.; Sha, G.; Lowe, M.J.; Rokhlin, S.I. Numerical and analytic modelling of elastodynamic scattering within
polycrystalline materials. J. Acoust. Soc. Am. 2018, 143, 2394–2408. [CrossRef]

28. Quey, R.; Dawson, P.; Barbe, F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and
remeshing. Comput. Methods Appl. Mech. Eng. 2011, 200, 1729–1745. [CrossRef]

29. Huthwaite, P. Accelerated finite element elastodynamic simulations using the GPU. J. Comput. Phys. 2014, 257, 687–707.
[CrossRef]

30. Standard ASTM E112; Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA,
USA, 2003.

31. Margetan, F.J.; Nieters, E.; Haldipur, P.; Brasche, L.; Chiou, T.; Keller, M.; Degtyar, A.; Umbach, J.; Hassan, W.; Patton, T.; et al.
Fundamental Studies of Nickel Billet Materials-Engine Titanium Consortium Phase II; National Technical Information Service (NTIS):
Springfield, MA, USA, 2005.

32. Walte, F.; Schwender, T.; Hirsekorn, S.; Schubert, F.; Spies, M. Reaktorsicherheitsforschung—Vorhaben-Nr.: 1501442 “Berechnung der
Ultraschallstreuung für einen Verbesserten Nachweis von Rissartigen Fehlern in Austenitischen Schweissnähten. Phase 1: Berechnung der
Ultraschallstreuung für 2DSchweissnahtmodelle”; Technical Report; Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP:
Saarbrücken, Germany, 2015.

33. Tromans, D. Elastic anisotropy of HCP metal crystals and polycrystals. Int. J. Res. Rev. Appl. Sci 2011, 6, 462–483.
34. Shannon, C.E. Communication in the presence of noise. Proc. IRE 1949, 37, 10–21. [CrossRef]
35. Fließbach, T. Statistische Physik; Springer: Berlin/Heidelberg, Germany, 1993.
36. Gaspard, P. Chaos, Scattering and Statistical Mechanics; Cambridge University Press: Cambridge, UK, 2005; Volume 9.

http://dx.doi.org/10.1121/1.390577
http://dx.doi.org/10.1016/j.ultramic.2011.08.002
http://dx.doi.org/10.1080/14786435.2015.1015469
http://dx.doi.org/10.1080/14786435.2016.1183829
http://dx.doi.org/10.5566/ias.1656
http://dx.doi.org/10.1007/s10955-018-2096-8
http://dx.doi.org/10.1080/09500839.2018.1472399
http://dx.doi.org/10.1017/S1431927619000485
http://www.ncbi.nlm.nih.gov/pubmed/31038096
http://dx.doi.org/10.1002/adem.201000258
http://dx.doi.org/10.1109/TUFFC.2009.1197
http://www.ncbi.nlm.nih.gov/pubmed/19574152
http://dx.doi.org/10.1007/s12572-018-0209-x
http://dx.doi.org/10.1121/1.5020785
http://dx.doi.org/10.1121/1.4931445
http://dx.doi.org/10.1098/rspa.2016.0738
http://dx.doi.org/10.1121/1.5031008
http://dx.doi.org/10.1016/j.cma.2011.01.002
http://dx.doi.org/10.1016/j.jcp.2013.10.017
http://dx.doi.org/10.1109/JRPROC.1949.232969


Acoustics 2022, 4 166

37. Gubernatis, J.; Krumhansl, J. Macroscopic engineering properties of polycrystalline materials: Elastic properties. J. Appl. Phys.
1975, 46, 1875–1883. [CrossRef]

38. Weaver, R.L. Diffusivity of ultrasound in polycrystals. J. Mech. Phys. Solids 1990, 38, 55–86. [CrossRef]
39. Hirsekorn, S. Elastic properties of polycrystals: A review. Texture, Stress. Microstruct. 1990, 12, 1–14. [CrossRef]
40. Hirsekorn, S. The scattering of ultrasonic waves by multiphase polycrystals. J. Acoust. Soc. Am. 1988, 83, 1231–1242. [CrossRef]
41. Born, M. Quantenmechanik der stoßvorgänge. Z. Phys. 1926, 38, 803–827. [CrossRef]
42. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2013; Volume 16.
43. Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns; John Wiley & Sons:

Hoboken, NJ, USA, 2008; Volume 70.
44. Man, C.S.; Paroni, R.; Xiang, Y.; Kenik, E.A. On the geometric autocorrelation function of polycrystalline materials. J. Comput.

Appl. Math. 2006, 190, 200–210. [CrossRef]
45. Arguelles, A.P.; Turner, J.A. Ultrasonic attenuation of polycrystalline materials with a distribution of grain sizes. J. Acoust. Soc.

Am. 2017, 141, 4347–4353. [CrossRef] [PubMed]
46. Dobrovolskij, D.; Hirsekorn, S.; Spies, M. Simulation of Ultrasonic Materials Evaluation Experiments Including Scattering

Phenomena due to Polycrystalline Microstructure. Phys. Procedia 2015, 70, 644–647. [CrossRef]
47. Chiu, S.N.; Stoyan, D.; Kendall, W.S.; Mecke, J. Stochastic Geometry and Its Applications; John Wiley & Sons: Hoboken, NJ,

USA, 2013.
48. Ohser, J.; Schladitz, K. 3D Images of Materials Structures: Processing and Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009.
49. Xue, X.; Righetti, F.; Telley, H.; Liebling, T.M.; Mocellin, A. The laguerre model for grain growth in three dimensions. Philos. Mag.

B 1997, 75, 567–585. [CrossRef]
50. Kühn, M.; Steinhauser, M.O. Modeling and simulation of microstructures using power diagrams: Proof of the concept. Appl.

Phys. Lett. 2008, 93, 034102. [CrossRef]
51. Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams; John Wiley & Sons:

Hoboken, NJ, USA, 2009; Volume 501.
52. Redenbach, C. Microstructure models for cellular materials. Comput. Mater. Sci. 2009, 44, 1397–1407. [CrossRef]
53. Geißendörfer, M.; Liebscher, A.; Proppe, C.; Redenbach, C.; Schwarzer, D. Stochastic multiscale modeling of metal foams.

Probabilistic Eng. Mech. 2014, 37, 132–137. [CrossRef]
54. Kampf, J.; Schlachter, A.L.; Redenbach, C.; Liebscher, A. Segmentation, statistical analysis, and modelling of the wall system in

ceramic foams. Mater. Charact. 2015, 99, 38–46. [CrossRef]
55. Abdullahi, H.; Liang, Y.; Gao, S. Predicting the elastic properties of closed-cell aluminum foams: A mesoscopic geometric

modeling approach. SN Appl. Sci. 2019, 1, 380. [CrossRef]
56. Liebscher, A. Laguerre approximation of random foams. Philos. Mag. 2015, 95, 2777–2792. [CrossRef]
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