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Abstract: Based on the Navier–Stokes equation for compressible media, this work studies the acoustic
properties of a human cochlear model, in which the scala vestibuli and scala tympani are filled with
compressible perilymph. Since the sound waves propagate as a compression wave in perilymph, this
model can precisely handle the wave–based phenomena. Time domain analysis showed that a sound
wave (fast wave) first propagates in the scala vestibuli and scala tympani, and then, a traveling
wave (slow wave) is generated by the sound wave with some delay. Detailed studies based on
even and odd mode analysis indicate that an odd mode sound wave, that is, the difference in the
sound pressures between the scala vestibuli and scala tympani, excites the Békésy’s traveling wave,
while an even mode sound determines the input impedance of the cochlea.

Keywords: auditory mechanism; cochlea; traveling wave theory; compressible perilymph; even/odd
mode analysis

1. Introduction

According to Békésy’s traveling wave theory [1], the basilar membrane (BM) in the
cochlea plays an important role in analyzing the frequency spectrum of sound waves.
The BM has a long trapezoid shape, and becomes narrower and thicker near the base
of the cochlea. In approaching the apex, it becomes wider and thinner, and increases in
flexibility. As a result, higher frequency sounds cause a displacement of the BM near the
base, and lower frequency sounds cause a displacement near the apex. These displacements
are detected by the outer hair cells, which are regularly arranged on the BM [2]. By using
such an auditory system, humans hear sounds in an audible frequency range from 20 Hz to
20,000 Hz and in a huge dynamic range of about 120 dB [3]. Even after Békésy’s proposal
of the traveling wave theory, considerable progress and great discoveries have continued,
including the active process of a cochlear amplifier [4]. However, there are still many
questions regarding the auditory mechanism.

In looking at the cochlear models reported in recent years, the finite element method
(FEM) based on fluid dynamics is primarily used due to its design flexibility for three–
dimensional cochlea models [5–13]. In fact, some models include the scala vestibuli (SV),
scala tympani (ST), BM, oval window (OW), round window (RW), and even the cochlear
aqueduct. These models can be classified using the following two aspects. One is the shape
of the cochlea models, that is, a simplified straight–type cochlear model and a realistic
spiral–shaped cochlear model. Though there might be a small difference between their
simulation results, both models are considered to be useful to study the basic mechanisms
of the cochlea. The other aspect is the settings of the perilymph, which fills the SV and
ST. When the perilymph is set as a compressible medium, compression waves (that is,
sound waves) are allowed to propagate in the SV and ST, and their wavelengths and phases
are precisely processed in the cochlear simulation. However, if the perilymph is set as
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an incompressible medium, the perilymph is not compressed at all, and the wavelength in
the medium would be infinity. Though such an approximation might be useful at a lower
audible frequency, errors can be more significant at a higher frequency.

This paper designs a cochlear model assuming that the perilymph in the SV and
ST is compressible, and explains the excitation mechanism of a traveling wave based
on even and odd mode analysis [14]. This is a basic technique that has been used for
a long time in microwave engineering for designing parallel couplers and explaining
the principle of undesired crosstalk on analog phones. We explain this technique briefly
in Section 3. By applying the even and odd mode analysis technique to FEM–based
simulations, we explain that an even sound wave mode and an odd sound wave mode are
excited simultaneously in the cochlea, and the odd mode contributes to generating Békésy’s
traveling waves on the BM and the even mode forms a standing wave in the cochlea.
Though these modes show different behaviors, both modes cannot exist independently and
are deeply related to each other so as to meet the boundary conditions of the cochlea, such
as the reflection conditions at the round window and the apex of the cochlea. In addition to
this brand–new approach, we also develop a new cochlear–equivalent circuit, based on the
transmission line theory [14]. From these simulation results, we conclude that the input
impedance of the cochlea is defined by the parallel connection of the input impedance of
the even mode and the odd mode, which means that the overall performance of the cochlea
is determined by a combination of the even and odd mode sound waves. Finally, we would
like to emphasize that it is indispensable to define the perilymph as a compressible medium
to discuss the even and odd mode approach.

2. Compressible Perilymph–Filled Cochlea Model
2.1. Modeling

The spiral shaped human cochlea, which is housed in a hard temporal bone, consists of
the SV, scala media (SM), and ST. The SV and SM are separated by the Reissner membrane,
and the SM and ST are separated by the BM. In the SM, there is an organ of Corti containing
outer hair cells (OHCs) and inner hair cells (IHCs), which detect the spectrum of sound
waves and transmit sound information to the auditory cortex through auditory nerves.

In the model, the microscopic behavior of the OHCs and IHCs, including the functions
of the cochlea amplifier, were ignored, and the influence of the thin Reissner’s membrane
was neglected because these effects are considered to be negligible and limited when we
discuss how a sound wave is generated and travels in the cochlea from a macroscopic point
of view [15]. In addition, the spiral shaped cochlea was unrolled to simplify the model
structure, and only the important portions that determine wave propagation phenomena
remained. In particular, the perilymph of the SV and ST was assumed as a compressible
fluid in order to precisely treat sound wave propagation as a compression wave.

Figure 1 shows a straight–shaped cochlea model, including the compressible peri-
lymph. The model was configured using three layered blocks of the SV, SM, and ST. The fan–
shaped BM, made of an elastic material, was embedded in the SM, and a small helicotrema
hole, which connects the SV to the ST, was on the apical side of the SM. An ideal hard wall
condition, which provides 100% reflection with a maximum pressure level and zero fluid
velocity, was applied to the walls of the SV and ST, except for the portions facing the oval
window (OW), round window (RW), and BM. The OW plane was set as an input port,
and a sinusoidal sound wave was excited there. An ideal soft wall condition, which pro-
vides a 100% reflection with a zero pressure level and maximum fluid velocity, was applied
to the RW to express the reflection of a sound wave coming from the perilymph–filled
ST (Z0 = 1.5 MPa s/m3) to an air–filled middle ear cavity (Z0 = 440 Pa s/m3), where Z0 is
the characteristic acoustic impedance of the medium. The SV, ST, and helicotrema were
filled with compressible perilymph with a viscosity of 0.7027 mPa s, a velocity of 1520 m/s,
and a mass density of 994.6 kg/m3. A Young’s modulus of 1 MPa, Poisson’s ratio of 0.49,
and a mass density of 1200 kg/m3 were used for the BM [16]. Other structural parameters
are given in the caption of Figure 1.
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where u stands for the fluid velocity, I is the identity tensor, p is the fluid pressure, ρ is 
the fluid density, and μ is the viscosity. 
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Figure 1. A straight–shaped cochlear model. The SV, ST and helicotrema are filled with a com-
pressible perilymph. The fan–shaped BM is embedded in the SM. Lc = 35 mm, Wc = 1.2 mm,
Hbv = Hbt = 1.235 mm, Hav = Hat = 1.245 mm, Wbm = 100 µm, Hbm = 30 µm, Wam = 500 µm,
and Ham = 10 µm [17–20].

A time domain simulation was carried out using the commercial software COMSOL
Multiphysics Ver. 5.3, including an add–on acoustic module and structural mechanics
module. For the simulations, the continuity equation and Navier–Stokes equation for
compressible media were used:
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where u stands for the fluid velocity, I is the identity tensor, p is the fluid pressure, ρ is the
fluid density, and µ is the viscosity.

2.2. Frequency Domain Analysis

Frequency domain analysis was carried out for the cochlear model mentioned above.
A 1 Pa sinusoidal sound wave was excited at the OW plane, and the sound pressure level
(SPL) of the SV (blue) and ST (green) and the displacement of the BM (red) were simulated
at 1000 Hz, 5000 Hz, 9000 Hz, 13,000 Hz, and 17,000 Hz, respectively. The SPLs were
calculated on the observation lines that ere set just at the center of the SV and ST blocks;
results are shown in Figure 2a–e. The horizontal axis of each graph shows the internal
position of the cochlea. For example, the positions of 0 mm and 35 mm correspond to
the cochlear base and apex, respectively. Looking at the time domain responses, it can be
confirmed that the SPL of the SV varied, up and down, across zero pressure at the cochlear
base, while the SPL of the ST became zero at the same time due to the free–end reflection
condition (reflection with a zero pressure level and maximum fluid velocity) of the RW.
Especially, it should be noted that the SPLs of the SV and ST partially vibrated near the
base; however, this vibration disappeared at the apex side beyond the yellow dashed lines.
Instead, the displacement of the BM occurred, and the traveling wave began to travel on
the BM.
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Figure 2. (a–e) Frequency domain analyses of the sound pressure level (SPL) of the SV (blue) and ST
(green), and the displacement of the BM (red) when the OW plane is excited by a 1 Pa sinusoidal sound
wave. The horizontal axis shows the internal position of the cochlea. (f) Frequency characteristic of
the maximum displacement of the BM, extracted from the maximum displacements of the BM such
as those in (a–e).

The curves drawn in red in Figure 2a,b show the displacement of the BM at a certain
time. By checking the envelope of the displacement as a movie, the maximum displacement
of the BM and the position in the cochlea were then determined. Taking the responses at
1000 Hz and 5000 Hz, for example, the maximum displacements of the BM were 9.63 nm
at 1000 Hz and 3.25 nm at 5000 Hz, respectively. We repeated this procedure for other
frequencies, and finally obtained the frequency dependence of the maximum displacement
of the BM, as shown in Figure 2f. In addition, we confirmed that the position where
maximum displacement occurred on the BM was coincident with Greenwood’s cochlear
tonotopy [21]. This graph indicates that the displacement tends to be larger at lower
frequencies. Generally, when an elastic membrane is excited by a sinusoidal sound wave
with the same pressure level, the displacement will be larger when the sound frequency is
lower. The behavior of such an elastic membrane can be seen in our simulation results as
well. Of course, these results do not include the non–linearity and amplification effects of
the cochlear amplifier; however, the response can be considered as the sensitivity of the
cochlea to the initial sound stimuli.

2.3. Time Domain Analysis

A 5000 Hz sound wave with a 1 Pa sound pressure was set for the OW plane, and time
domain analyses were carried out. Figure 3 shows the side view of the straight–shaped
cochlea. An upper and a lower clock correspond to the SV and ST, respectively. Since the
SM is thin compared to the thickness of the SV and ST, the SM is not clearly shown, but
exists between the SV and ST. The D–BM color bar in the figure shows the displacement of
the BM. The SPL color bar shows the sound pressure levels in the SV and SM.
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As shown in Figure 3a, at t = 0.03 ms, the excitation had only just started, and the SPL 
was still almost zero at any point in the SV and ST. However, as shown in Figure 3b, at t 
= 0.06 ms, the sound wave traveled as a fast wave with a speed of 1520 m/s in the peri-
lymph, and the SPL became zero only near the RW region. This is due to the free–end 
reflection condition of the RW. At this time, the traveling wave was not yet seen. 

Figure 3. Time domain analysis of the sound pressure level (SPL) of the SV and ST and the dis-
placement of the BM (D–BM) when the OW is excited by a 1 Pa, 5000 Hz pure tone. (a) t = 0.03 ms,
(b) t = 0.06 ms, (c) t = 0.17 ms, and (d) t = 0.46 ms.

As shown in Figure 3a, at t = 0.03 ms, the excitation had only just started, and the
SPL was still almost zero at any point in the SV and ST. However, as shown in Figure 3b,
at t = 0.06 ms, the sound wave traveled as a fast wave with a speed of 1520 m/s in the
perilymph, and the SPL became zero only near the RW region. This is due to the free–end
reflection condition of the RW. At this time, the traveling wave was not yet seen.

When the time reached t = 0.17 ms, the traveling wave began to appear near the base
of the cochlea, as shown in Figure 3c. It should be noted that the SPL near the RW was still
kept at a zero–pressure level, but, near the apex of the cochlea, the SPLs in the SV and ST
increased and were almost identical.
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As presented in Figure 3d, when time reached t = 0.46 ms, the traveling wave was
gradually formed on the BM. Although the wavelength of the vibration waveform observed
on the BM looked shorter than that of the 5000 Hz sound wave (fast wave with a wavelength
of 304 mm in the perilymph), the complete Békésy’s traveling wave (slow wave) was not
formed yet. To form an actual traveling wave in which the wavelength is significantly
shortened and compressed on the BM, it will take dozens of milliseconds to reach the
steady state.

The upper graphs of Figure 4 present the SPLs in the SV and ST and the displacement
of the BM after reaching the steady state (t = 38.94 ms), when the OW was excited by a 1 Pa,
5000 Hz pure tone. The horizontal axis shows the internal position of the cochlea. Some
interesting results were found in the simulation, as follows.
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Figure 4. The upper graphs show the sound pressure levels (SPLs) in the SV (PSV in green) and ST
(PST in blue) and the displacement of the BM (BM in red) when a 1 Pa, 5000 Hz pure tone is applied
to the OW. The lower graphs present the SPLs of the even symmetric sound mode (PAV in black) in
the SV and ST, and odd symmetric sound mode in the SV (PDiff_SV in green) and ST (PDiff_ST in blue).
The horizontal axis shows the internal position of the cochlea, and all graphs reach the steady state
(t = 38.94 ms).

1. The SPL of the ST became zero all the time at the base of the cochlea (at 0 mm position)
due to the free–end reflection condition of the RW.

2. As shown by the SPLs of the SV and ST, a small vibration can be seen in each graph at
the position from 0 mm to 12 mm.

3. The SPLs of the SV and ST, corresponding to the graphs of the PSV and PST, completely
overlapped from 12 mm to 35 mm.

4. The displacement of the BM became the maximum at around 12 mm, at the position
where the tonotopy predicts that humans hear 5000 Hz sounds.

Here, we calculated the average pressure, PAV = (PSV + PST)/2, and the pressure
difference, PDiff_SV = PSV – PAV and PDiff_ST = PST – PAV. The results are shown in the lower
graphs in Figure 4. Interestingly, the graphs (PDiff_SV and PDiff_ST) show perfect symmetric
against the zero axis and PAV draws a smoothly changing waveform. In other words, this
means that the sound wave traveling in the cochlea is composed of an even symmetric
sound wave (even mode) and an odd symmetric sound wave (odd mode).
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3. Even/Odd Mode Analysis

The cochlea model shown in Figure 1 has an architecture in which the SM is symmet-
rically sandwiched by the same–shaped SV and ST. This means that even and odd mode
analyses can be applied to the model. Even and odd mode analyses are basic techniques
that have been used for a long time in microwave engineering for designing couplers
using parallel transmission lines and for explaining the principle of the crosstalk often
seen in analog telephones [14]. As shown in Figure 5a, two transmission lines, A and B,
were placed in parallel, and the terminals were numbered from Port 1 to Port 4. Then,
when a signal was input from Port 1, it was transmitted along transmission line A and
output from Port 3. However, depending on the degree of coupling between the lines,
the signal in transmission line A leaked somewhat into transmission line B. This problem is
expressed by the sum of two transmission line modes. One is an even symmetric mode
(even mode) that was generated by exciting Port 1 and Port 2 with the same amplitude
and in–phase signals, as shown in Figure 5b. The other one is an odd symmetric mode
(odd mode) that was generated by exciting Port 1 and Port 2 with the same amplitude, but
with anti–phase signals, as shown in Figure 5c. Simply through the superposition of these
modes, the excitation at Port 1 in Figure 5a could be treated as the sum of the even and odd
mode excitations [14].
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Figure 5. A coupler composed of two transmission lines. (a) Geometry and Port 1 excitation. (b) Port
1 and Port 2 excitation with the in–phase signals (even mode). (c) Port 1 and Port 2 excitation with
the anti–phase signals (odd mode).

In this section, in order to evaluate how the even and odd modes of the sound wave
(fast wave) contribute to generating the traveling wave (slow wave), a symmetric model
(Figure 6) was designed based on the cochlear architecture shown in Figure 1. This model
has two input planes, designated as “input 1” and “input 2” in the figure. In the even
mode, these planes were excited by the same in–phase amplitude sound waves, while in
the odd mode, they were excited by the same anti–phase amplitude sound waves. To avoid
undesired coupling between the odd mode sound waves in the SV and ST, the helicotrema
was removed from the original cochlear model, and only the BM remained as it was.
Other physical and structural parameters were completely the same as the original model
in Figure 1.
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Figure 6. A cochlea–based symmetric model for even and odd mode analyses. Two input planes
“input 1” and “input 2” are excited by in–phase (even mode) and anti–phase (odd mode) sound waves.
The helicotrema is removed from the original model. Other structural parameters are completely the
same as those of the cochlea model in Figure 1.

The simulation results are summarized in Figure 7 when a 1 Pa, 5000 Hz sound wave
was applied for both input planes. The SPLs in the SV and ST and the displacement of
the BM, which was generated by the even or odd symmetric sound waves, are presented.
As shown in Figure 7a, in the odd mode, odd symmetric SPLs could be observed in the
SV and ST at the internal cochlear position from 0 mm to 12 mm. However, the odd
mode response disappeared beyond 12 mm. This means that the odd mode sound wave
plays an important role in generating the traveling wave. The color bar also presents this
phenomenon visually. It should be noted that the energy of the odd mode sound wave was
perfectly transformed into that of the traveling wave on the BM.

On the other hand, in the even mode, as shown in Figure 7b, the SPL graphs of the
SV and ST completely overlapped with each other and formed an even symmetric sound
wave in the cochlea. However, the displacement of the BM was not seen at all. This can be
confirmed visually with the color bar. This means that the even mode sound wave does not
generate the traveling wave. Though only the demonstration result at 5000 Hz is shown
here, the same can be said for other frequencies.

The results mentioned above are summarized in Figure 8a; namely, the sound wave
excited at the OW generated two symmetric sound modes, an even mode and an odd
mode. Focusing on the wave phenomena in the SV, the even mode traveled in the SV, and
was reflected at the cochlear apex with the maximum sound pressure level and zero fluid
velocity, and finally, it came back to the OW without power dissipation, while in the odd
mode, since the sound wave was completely transformed into the traveling wave and
absorbed in the BM, the odd mode sound did not come back to the OW. These phenomena
can be simply expressed by an equivalent circuit based on transmission line theory, as
shown in Figure 8b.
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Figure 7. Even and odd mode simulation results for the cochlea–based symmetric model presented
in Figure 6. The horizontal axis shows the internal position of the cochlea. (a) Odd mode and
(b) even mode.
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Figure 8. An equivalent circuit of the cochlea. (a) Contributions of the even and odd sound wave
modes to the cochlear acoustics. (b) an equivalent circuit of the cochlea designed based on transmis-
sion line theory.

In this circuit, an alternative voltage source, vg, and the inner impedance of the source,
Zg, were connected in series to design an excitation circuit, and the input impedance of
the cochlea, Zc, wa expressed by a parallel connection of an even mode impedance, Zeven,
and an odd mode impedance, Zodd. Since the even and odd modes behave independently
in the SV and ST, the coupling of both modes was ignored. Then, Zeven and Zodd were
written as (see Appendix A):

Zeven = −jZ0 cot βLc (3)

Zodd = Z0 (4)

β = ω

√
ρ

κ
(5)

where j is the imaginary unit (j2 = −1), Z0 is the acoustic characteristic impedance of the
perilymph, ρ is the mass density, κ is the bulk modulus, f is the sound wave frequency, β is
the phase constant, and Lc is the cochlear length, respectively.

From these, the total input impedance of the cochlea Zc was expressed by the parallel
connection of the Zeven and Zodd as follows:

Zc =
ZevenZodd

Zeven + Zodd
(6)

Circuit current i0 was calculated as:

i0 =
vg

Zg + Zc
(7)
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Then, the applied voltage (vc) to the Zeven and Zodd were estimated by:

vc = i0Zc (8)

and currents on the Zeven and Zodd were given by:

ieven =
vc

Zeven
(9)

iodd =
vc

Zodd
(10)

Finally, the power dissipation on the even and odd modes, PDeven and PDodd, and the
total power dissipation by the cochlea, PDc, were expressed as:

PDeven =
vci∗even

2
(11)

PDodd =
vci∗odd

2
(12)

PDc = PDeven + PDodd =
vci∗0

2
(13)

In the circuit simulations, parameters vg = 1.0 V (corresponding to a 1 Pa sound wave
excitation), Z0 = 1.5 MPa s/m3, ρ = 994.6 kg/m3, κ = 2.30e9 Pa, f = 5000 Hz, and Lc = 35 mm
were used.

The circuit simulation results are shown in Figure 9. The frequency dependence of
the even and odd mode impedance, Zeven and Zodd, are shown in Figure 9a,b. Blue solid
curves and red dashed curves denote the real part and imaginary part of the impedance,
respectively. As shown by Zeven, the real part of Zeven became zero for all frequencies
because the even mode sound wave was perfectly reflected at the apex and went back to the
voltage source again without power dissipation. On the other hand, at lower frequencies,
below 10,600 Hz, the imaginary part of the Zeven became negative, which meant that the
cochlea became capacitive. Contrarily, at higher frequencies beyond 10,600 Hz, it became
positive, and the cochlea became inductive. This result tells us an important fact in that
the Zeven reached zero at around 10,600 Hz. In this case, since Zeven was connected to Zodd
in parallel, as shown in Figure 8b, the input impedance of the cochlea, Zc, also reached
zero, and sound stimuli could not enter the cochlea. As a result, hearing loss will occur at
this frequency. In fact, the displacement of the BM shown in Figure 2f was also confined
around there. Furthermore, note that hearing deterioration is confirmed at the measured
equal–loudness contours around 10,000 Hz [22]. We need to compare both results carefully
because the equal loudness contours include psychological effects on the test subjects.
However, our simulation result implies that the hearing deterioration at this frequency
might occur due to the structure of the cochlea.

Next, the frequency dependence of the even and odd mode power dissipation, PDeven
and PDodd, are presented in Figure 9c,d. The graph of the PDeven indicates that only the
reactive power was stored in the cochlea and there was no power dissipation at any fre-
quency. In contrast, the graph of the PDodd shows that the cochlea dissipated active power
to displace the BM and generate the traveling waves. However, the power dissipation was
reduced around 10,600 Hz, because the even mode impedance, Zeven = 0, affected the odd
mode properties.

The input impedance of the cochlea, Zc, is expressed by Equation (6), and the frequency
dependence of Zc is summarized in Figure 9e. As pointed out, the zero impedance of the
even mode Zeven = 0 at 10,600 Hz affected the whole hearing performance of the cochlea;
namely, the input impedance of the cochlea also became zero, and a significant impedance
mismatch between the source and the cochlea occurred. As a result, although the cochlea
as excited by the 1 Pa (vg = 1.0 V) sound source, the actual pressure applied to the cochlea



Acoustics 2022, 4 178

became smaller. The red point shows an applied pressure at 5000 Hz, calculated by the
FEM–based structural simulation of the even and odd mode sound waves in Figure 4.
Although there are some errors between the results obtained by the structural analysis and
the equivalent circuit analysis, we consider that they are within an acceptable range.
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the FEM–based structural simulation of the even and odd mode sound waves in Figure 4.

4. Conclusions

The wavelengths of the sound wave propagating in the perilymph at a speed of
1520 m/s were estimated as λ = 15.2 m at 100 Hz and λ = 1.52 m at 1000 Hz, respectively.
These wavelengths were long enough compared to the size of the cochlea. However,
at 10,000 Hz, the wavelength was only λ = 152 mm, and the 35 mm cochlea corresponded
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to about a quarter wavelength of the sound wave. Since the total length of the SV and
ST was about 70 mm, the OW and RW were located at a half wavelength distance at this
frequency. This means that, when the OW was pushed in, the RW moved toward the
inside simultaneously. In reality, the physics of the cochlea are not so easy to understand
because it includes elastic media such as the BM, OW, and RW. However, considering the
wavelength of the sound waves at the higher audible frequency, we need to define the
perilymph as a compressible medium to treat the phenomena caused by the sound waves
in the cochlea more precisely.

Due to these reasons, we treated the perilymph of the SV and ST as a compressible
medium, and fluid dynamics simulations were carried out using the Navier–Stokes equa-
tion for compressible media. From the time domain simulations, we observed that the
sound wave (first wave) started to propagate in the cochlea first, and then the traveling
wave (slow wave) as generated on the BM after a delay. This indicates that sound waves
play an important role in exciting the traveling wave in the cochlea. From the frequency do-
main simulations, we observed that (1) the odd mode sound waves contributed to exciting
the traveling wave; (2) the even mode sound waves did not generate the traveling wave;
and (3) both modes did not couple in the cochlea. However, as indicated by the equivalent
circuit simulations based on the transmission line theory, the even and odd modes are
deeply related in terms of the impedance of the cochlea. For example, the cochlea is ex-
pected to lose hearing capability at 10,600 Hz due to the zero impedance of the even mode.
Finally, we hope that many new discoveries will be made by assuming the compressible
perilymph when the acoustic aspects of the cochlea are studied.
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Appendix A

Under the assumption that a fluid is thermodynamically uniform and constant, the
basic equation of fluid dynamics was linearized by adding small disturbance terms to
velocity, ν; math density, ρ; and pressure, p, and ignoring the terms of degree 2 and higher.
Then, the wave equation in terms of sound waves was derived as follows:

∂2 p
∂t2 − c2

(
∂2 p
∂x2 +

∂2 p
∂y2 +

∂2 p
∂z2

)
= 0 (A1)

By assuming that the sound wave travels in x direction, this equation was simplified as:

∂2 p(x)
∂t2 − c2 ∂2 p(x)

∂x2 = 0 (A2)

c =
√

κ

ρ
(A3)
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where κ is the bulk modulus, ρ is the mass density, and c is the speed of the sound wave.
When the sound source was expressed by:

p0(t) = P0ejωt (A4)

Equation (A2) could be written as:

∂2 p(x)
∂x2 + β2 p(x) = 0 (A5)

where

β =
ω

c
= ω

√
ρ

κ
(A6)

In addition, the velocity of fluid u was given by:

∂u(x)
∂t

= jωu(x) = − 1
ρ0

∂p(x)
∂x

(A7)

By solving Equations (A5) and (A7), the general solutions of p(x) and u(x) were
obtained as:

p(x) = Pae−jβx + Pbejβx (A8)

u(x) =
1

Z0
(Paejβx − Pbejβx) (A9)

where
Z0 =

√
ρκ (A10)
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Figure A1. (a) Ladder network of a transmission line, composed of series inductors L and shunt
capacitors C. (b) Zl–terminated transmission line. (c) Open–terminated transmission line.

On the other hand, an equivalent circuit of a transmission line (TL) was expressed
by a ladder network composed of series inductors and shunt capacitors, as shown in
Figure A1a [14]. When the capacitance and inductance per unit length of the transmission
line were defined by C’ and L’, the telegraph equation of a lossless transmission line was
expressed as:

∂2v(x)
∂x2 + β2v(x) = 0 (A11)
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where
β = ω

√
L′C′ (A12)

In addition, since the relation between the voltage v(x) and current i(x) were given by

∂v(x)
∂x

= −jωL′i(x) (A13)

the general solutions of v(x) and i(x) were given as

v(x) = Vae−jβx + Vbejβx (A14)

i(x) =
1

Z0
(Vaejβx −Vbejβx) (A15)

where

Z0 =

√
L′

C′
(A16)

When we compare Equations (A5) and (A11), (A8) and (A14), (A9) and (A15), (A10)
and (A16), and (A6) and (A12), we can see that the equations for the sound waves traveling
in x direction were written in the same form as those for electric signals traveling on
a transmission line; namely, the propagation of the sound waves could be expressed by the
transmission line based equivalent circuits by associating variables and medium constants
as follows.

p(x)↔ v(x) (A17)

u(x)↔ i(x) (A18)

ρ↔ L′ (A19)

κ ↔ 1/C′ (A20)

Based on the transmission line theory, the input impedance Zin of the Zl–terminated
transmission line with length d, shown in Figure A1b, was written as [14]:

Zin =
Zl + jZ0 tan βd
Z0 + jZl tan βd

Z0 (A21)

The perfect reflection with the maximum voltage and zero current occurred at an
open–terminated transmission line, as presented in Figure A1c. By setting Zl → ∞ in
Equation (A21), the input impedance Zin could be derived as [14]:

Zin = −jZ0 cot βd (A22)

This corresponds to the case when the cochlea–based symmetric model in Figure 6
was excited by the even mode sound wave. Since the cochlear apex reflected the even mode
sound waves perfectly with the maximum pressure and zero velocity, as shown in Figure 7b,
the input impedance of the even mode, Zeven, could be determined as follows by analogy
from the input impedance of the open–terminated transmission line in Equation (A22).

Zeven = −jZ0 cot βLc (A23)
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