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Abstract: Free vibration analysis of prestressed, homogenous, Fiber-Metal Laminated (FML) and
composite beams subjected to axial force and end moment is revisited. Finite Element Method (FEM)
and frequency-dependent Dynamic Finite Element (DFE) models are developed and presented. The
frequency results are compared with those obtained from the conventional FEM (ANSYS, Canons-
burg, PA, USA) as well as the Homogenization Method (HM). Unlike the FEM, the application of the
DFE formulation leads to a nonlinear eigenvalue problem, which is solved to determine the system’s
natural frequencies and modes. The governing differential equations of coupled flexural–torsional vi-
brations, resulting from the end moment, are developed using Euler–Bernoulli bending and St. Venant
torsion beam theories and assuming linear harmonic motion and linearly elastic materials. Illustrative
examples of prestressed layered, FML, and unidirectional composite beam configurations, exhibiting
geometric bending-torsion coupling, are studied. The presented DFE and FEM results show excellent
agreement with the homogenization method and ANSYS modeling results, with the DFE’s rates of
convergence surpassing all. An investigation is also carried out to examine the effects of various
combined axial loads and end moments on the stiffness and fundamental frequencies of the structure.
An illustrative example, demonstrating the application of the presented methods to the buckling
analysis of layered beams is also presented.
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1. Introduction

Vibration is one of the main causes of structural failure, which makes it one of the most
important and ongoing research fields in structural modelling and analysis. Multilayered
structures, with their increasing applications in aerospace, mechanical and civil engineering,
are subjected to different types of preloads based on their application. One of these prestress
conditions is combined axial force and end moment which, for instance, happens where
structural members are interconnected through an imperfect joint. Layered and laminated
composite materials, e.g., Fiber-Metal Laminates (FMLs), are more prone to failure under
these conditions due to their manufacturing nature. FML materials consist of layers of metal
sheet and unidirectional fiber layers embedded in an adhesive system. Glare, an optimized
FML with increasing applications in aircraft manufacturing, consists of alternating layers
of aluminum and glass fiber prepreg layers.

The governing differential equations describing the motion for many beam configura-
tions have been already developed and reported in the literatures. Neogy and Murthy [1]
carried out one of the earliest studies around prestressed beams and found the fundamental
frequency of an axially loaded column for two different boundary conditions of pinned-
pinned and clamped-clamped. Prasad et al. [2] introduced a solution using Rayleigh-Ritz
principles in an iterative form, and in comparison, with other approximate methods.

The bending-torsion coupled vibration of beams caused by cross-sectional geometry
was first addressed by Timoshenko [3] and has been further studied by, among many
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other researchers, the second author (and his co-workers) to develop new solution meth-
ods, or to include diverse effects such as axial load (see, for example, [4,5]). Materially
coupled vibrations of beams caused by different material couplings [6,7] have also been
addressed and the governing differential equations describing the motion of various beam
configurations have been developed [8,9]. Stability and vibrational analyses of beams
subjected to axial preload and its effects on the beam stiffness and elasticity have also been
conducted [10,11]. However, the vibration analysis of beams subjected to combined axial
force and end moment is scarce [12–14].

Many analytical, semi-analytical and numerical methods have been developed to find
solutions to the governing differential equations of motion. The Finite Element Method
(FEM), as the most popular computational method in structural mechanics, has been
extensively implemented by researchers (see, for example, [15–17]). Analytical solutions
have also been formulated for the vibration analysis of various beam configurations [11,15]
and Banerjee et al. [18] presented a Dynamic Stiffness Matrix (DSM) for coupled bending–
torsion beam elements. Hashemi [19] introduced the frequency-dependent Dynamic Finite
Element (DFE) method, a hybrid method bridging the gap between the conventional
FEM and DSM methods. The DFE combines the accuracy of analytical methods with the
versatility of numerical methods to conduct a vibration analysis of structural elements
exhibiting coupled behaviours. The DFE formulation has since been further extended to
vibration analysis of more complex beam configurations (see, for example [4–7]).

More recently, Ahmet Hasim [20] presented an isogeometric refined zigzag finite
element (IGRZF) model that gives the opportunity to obtain the exact beam geometries
directly from a computer aided design (CAD) software, Rhinoceros. The employed kine-
matics is based on the refined zigzag theory that makes the finite element independent
from the number of layers considered. In this method, not only the element does not suffer
from shear locking and geometric error, but it also does not need shear correction factors.
The presented IGRZF approach is then used to analyze various sandwich beams. Later,
Kefal et al. [21] extended this method to perform quasi-static structural analysis of sandwich
and laminated composite beams with embedded delamination. An incomplete interac-
tion, leading to interlayer slip, has also been considered and modeled. Foraboschi [22]
introduced a 2D mathematical model for a two-layer beam, considering interlayer slip.
Cas et al. [23] presented a derivation of a new mathematical model and its analytical solu-
tion for the analysis of geometrically and materially linear, 3D, two-layer, composite beams,
with interlayer slips between the layers for the first time. In this study, it is assumed that
there is no incomplete interaction between the layers.

Cortés and Sarría [24] presented a dynamic analysis of 3-Layer sandwich beams with
thick viscoelastic damping core for FEM applications. They introduced a modified RKU
model [25]. RKU model, originally proposed by Ross, Kerwin and Ungar [25] for the
vibration modeling of viscoelastic laminate, is one of the first methods developed to find
the flexural stiffness of sandwich beams and it is still commonly used in engineering
applications because of its ease of computational implementation. Although RKU applies
to simply supported beams it has been used for other types of boundary conditions as
well. Besides other boundary conditions, Cortés and Sarría [24] used RKU for the dynamic
analysis of cantilevered sandwich beams.

There are many studies on other aspects of the beam’s dynamics and stability.
Mohri et al. [26] studied the vibration of buckled thin-walled beams with open sections.
They dealt with small, superimposed vibrations of thin-walled elements with various
open sections such as bisymmetric sections. They investigated vibration under two types
of static pre-loadings: pure compression and lateral bending forces. A nonlinear model
which accounts for nonlinear warping, bending-bending and torsion-bending couplings
was used for the analysis. Franzoni et al. [27] proposed a numerical approach, based on a
nonlinear finite element model and an experimental modal analysis procedure, to estimate
the dynamic behavior of a typical aeronautical aluminum box-beam structure liable to
buckling. Augello et al. [28] proposed an efficient Carrera Unified Formulation (CUF)-
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based method for the vibrations and buckling of thin-walled open cross-section beams,
with complex geometries, under progressive compressive loads. A comprehensive study
was also conducted in order to investigate the effects of compressive loads on the natural
frequencies of the thin-walled beams. Namely, a numerical simulation of the Vibration
Correlation Technique was provided. Finite Elements were built in the framework of the
CUF, and the displacements of complex geometric shapes of the thin-walled beams were
evaluated using low- to higher-order Taylor and Lagrange polynomials.

As mentioned earlier, the coupled free vibration analysis of homogeneous beams
subjected to combined axial force and end moment has only been investigated in a few
semi-analytical studies [12–14]. The geometrically coupled flexural–torsional vibration of
homogeneous beams caused by combined prestress was recently revisited by the authors,
using both FEM and DFE methods [29–31]. To the authors’ best knowledge, the geometri-
cally coupled flexural–torsional vibration of layered beams, in the presence of combined
axial load and end moment has not been reported in the open literature. In what follows,
the coupled flexural–torsional vibration of axially-loaded layered beams, caused by the
end moment is investigated and two formulations are presented.

The presented mathematical model is based on some simplifying assumptions, which
lead to computational benefits for the presented methods. An equivalent single-layer
formulation, similar to that presented in the RKU model and used by Cortés and Sarría [24],
is exploited. The equivalent single-layer model is then discretized (along the beam length)
using FEM [29,31] and DFE [30]. The application of the presented theory is demonstrated
through the vibration analysis of illustrative prestressed layered beams. The presented
layered FEM and DFE results show excellent agreement with homogenization method
and ANSYS modeling results, with the DFE’s rates of convergence surpassing all. An
investigation is also carried out to examine the effects of various combined axial loads and
end moments on the stiffness and fundamental frequencies of the structure. An illustrative
example, demonstrating the application of the presented methods to the buckling analysis
of layered beams is also presented.

The structure of the paper is as follows: In Section 2, the concept of coupled, linear,
undamped, free vibration of prestressed multi-layer beam, is presented followed by the
expressions for the Galerkin-type integral form of the governing differential equations.
Next, two layered beam conventional FEM (LBFEM) and Dynamic, frequency dependent
(LBDFE) formulations are presented. In Section 3, the application of presented formulations
to four cases of Steel-rubber-steel layered beam (Section 3.1), Cantilever Three-layered
Fiber-Metal Laminated (FML) Beam (Section 3.2), and Cantilever Three-layered Laminated
Composite Beam (Section 3.3), are presented. In Section 4, a discussion of the results
obtained is provided followed by final conclusions that summarize the most important
achievements of the article.

2. Materials and Methods

Consider a (three-)layered beam subjected to two equal and opposite end moments,
Mzz, about z-axis and an axial load, P, loaded in the plane of greater bending rigidity,
undergoing linear coupled torsion and lateral vibrations along the z-axis. Figure 1 depicts
the schematic of the problem, where L, h and t stand for the beam’s length, width and
height, respectively. As mentioned earlier, the presented mathematical model is based
on an equivalent single-layer formulation, similar to that presented in the RKU model
and used in [24]. The equivalent single-layer model is discretized (along the beam length)
using FEM [29,31] and DFE [30]. The flexural and torsional rigidities of the equivalent
single-layer beam are obtained by the addition of the individual contribution of each layer
(calculated with respect to the beam neutral axis) [24,28]. It is assumed that the equivalent
single-layer beam undergoes bending and torsional displacements and vibrates in a way
like the original layered configuration, i.e., dynamically equivalent. One might put this
in an overly simplistic way by saying all layers exhibit the same transverse displacement,
slope, and torsional rotation. However, in reality this would violate interlayer lateral and
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axial displacements’ continuity and the use of a beam model accounting for 3D motion is
preferable. Even so, the equivalent single-layer model in the vibration analysis of layered
beams is commonly used [24,25].
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system and loadings. 
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For composite layers, the lamina theory and the method of homogenization are first
used to find the equivalent physical properties of each layer, which are then used to obtain
the equivalent single-layer beam model. Exploiting the classical lamination theory, a
homogenized beam model is also developed and is used for the validation purposes. In this
case, the apparent material properties (equivalent ρ, E, G, . . . ) are used to treat the original
layered beam as a simple beam. Consequently, only one set of (two coupled) equations of
motion, with the homogenized parameters are solved. In contrast, the equivalent single-
layer model uses equivalent flexural and torsional rigidities obtained and three sets of
equations (six equations in total), combined as two, are solved.

Governing differential equations of motion is developed by defining an infinitesimal
element using the following assumptions:

1. The displacements are small.
2. The stresses induced are within the limit of proportionality.
3. The cross–section of the beam has two axes of symmetry.
4. The cross–sectional dimensions of the beam are small compared to the span.
5. The transverse cross–sections of the beam remain plane and normal to the neutral

axis during bending, and
6. The beam’s torsional rigidity (GJ) is assumed to be very large compared with its

warping rigidity (EΓ), and ends are free to warp, i.e., state of uniform torsion.
7. Damping is neglected.

Using the above-mentioned assumptions, it can be shown [12,26] that the governing
differential equations for a prismatic, Euler–Bernoulli beam (EI = constant) subjected to
constant axial force (P) and end moment (Mzz), and undergoing coupled flexural-torsional
vibrations (caused by end moment), are as follows:

EIw′′′′ + Pw′′ + Mzzθ′′ − ρA
..
w = 0 (1)

GJθ′′ +
PIP
A

θ′′ + Mzzw′′ − ρIP
..
θ = 0 (2)

where ()′, stands for derivative with respect to x and (•) denotes derivative with respect
to t (time). As can be observed from Equations (1) and (2), the system is coupled by the
end-moments, Mzz. The pre-stress effects of axial load and end moment are represented by
the second and third terms in Equations (1) and (2). These coupling rigidities will result in
a (coupling) stiffness matrix which represents the pre-stress effects on the beam’s rigidity.
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Exploiting the simple harmonic motion assumption, displacements, w and θ, are
written as:

w(x, t) = Ŵsin(ωt), (3)

θ(x, t) = θ̂sin(ωt), (4)

where ω denotes the frequency, Ŵ and θ̂ are the amplitudes of flexural and torsional
displacements, respectively. Substituting Equations (3) and (4) into Equations (1) and (2)
leads to:

EIŴ ′′′′ + PŴ ′′ + Mzz θ̂′′ − ρAω2Ŵ = 0 (5)

GJθ̂′′ + PIP θ̂′′ + MzzŴ ′′ − ρIP Aω2θ̂ = 0 (6)

As, in this case, there are three layers with different materials, one will have three sets
of equations, i.e., two for each layer and six equations in total, written as (I = 1, 2, 3):

EIŴ ′′′′ + PŴ ′′ + Mzz θ̂′′ − ρAω2Ŵ = 0 (7)

Gi Ji θ̂
′′
i + Pi IP,i θ̂

′′
i + Mzz,iŴ

′′
i − ρi IP,i Aiω

2θ̂i = 0 (8)

where indices 1, 2 and 3 represent the properties of layer 1, layer 2 and layer 3, respectively.
The second moment of inertia and polar moment of inertia for each layer is calculated about
the neutral axis of the whole (beam) cross–section, and axial force and moment equilibrium
equations are written as:

P = P1 + P2 + P3, and Mzz = Mzz,1 + Mzz,2 + Mzz,3 (9)

It is worth noting that Equations (7) and (8) can be readily extended to n-layer beam
configurations (i.e., I = 1, 2, . . . , n). Assuming linearly elastic materials, an equivalent
single-layer beam model [24,28] is developed, which vibrates in a similar way as the original
layered configuration. The equivalent single-layer beam, governed by the pair of coupled
Equations (7) and (8), undergoes bending displacement, Ŵ, and torsional displacement, θ.
Simply put, the lateral and torsional displacements and slope of all layers are set equal (like
ANSYS ‘constraint rigid link’ element [32]); i.e., Ŵ1 = Ŵ2 = Ŵ3 = Ŵ and θ̂1 = θ̂2 = θ̂3 = θ̂.
In other words, the summation of three bending equations describes the bending equation
of the whole beam and the summation of three torsion equations describes the torsion
equation of the equivalent single-layer beam, resulting in the following two through-the-
thickness equations:

(E1 I1 + E2 I2 + E3 I3)Ŵ ′′′′ + (P1 + P2 + P3)Ŵ ′′ + (Mzz,1 + Mzz,2 + Mzz,3)θ̂′′

−(ρ1 A1 + ρ2 A2 + ρ3 A3)ω
2Ŵ = 0,

(10)

(G1 J1 + G2 J2 + G3 J3)θ̂′′ + (P1 IP,1 + P2 IP,2 + P3 IP,3)θ̂′′ + (Mzz,1 + Mzz,2 + Mzz,3)Ŵ ′′

−(ρ1 IP,1 A1 + ρ2 IP,2 A2 + ρ3 IP,3 A3)ω
2θ̂ = 0,

(11)

where the bending and torsional rigidities of all layers (EiIi, and GiJi, i = 1, 2, 3, in this case.)
are calculated with respect to the neutral axis of the overall cross–sectional area. In other
words, as previously mentioned, the addition terms of flexural and torsional rigidities,
(E1I1 + E2I2 + E3I3) and (G1J1 + G2J2 + G3J3), respectively, represent the corresponding
rigidities for the equivalent single-layer beam model [24,28].

The Galerkin method of weighted residuals is employed to develop the integral form
of the above equations, written as (note: from this point on, the hat sign has been omitted
for simplicity):
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W f =
∫ L

0
δW((E1 I1 + E2 I2 + E3 I3)W ′′′′ + (P1 + P2 + P3)W ′′ + (Mzz,1 + Mzz,2 + Mzz,3)θ′′−

(ρ1 A1 + ρ2 A2 + ρ3 A3)ω
2W
)

dx = 0
(12)

Wt =
∫ L

0
δθ((G1 J1 + G2 J2 + G3 J3)θ′′ + (P1 IP,1 + P2 IP,2 + P3 IP,3)θ′′ + (Mzz,1 + Mzz,2 + Mzz,3)W ′′−

(ρ1 IP,1 A1 + ρ2 IP,2 A2 + ρ3 IP,3 A3)ω
2θ
)

dx = 0
(13)

where δW and δθ (i.e., weighting functions) represent the transverse and torsional virtual
displacements, respectively. Performing integration by parts on Equations (12) and (13)
leads to the weak integral form of the governing equations, where the resulting boundary
terms vanish irrespective of boundary conditions [33]. The beam is then discretized along
its length (see Figure 2), leading to the following element integral equations:

Wk
f =

∫ l

0

(
(E1 I1 + E2 I2 + E3 I3)W ′′ δW ′′ + (P1 + P2 + P3)W ′δW ′+

(Mzz,1 + Mzz,2 + Mzz,3)θ
′δW ′ − (ρ1 A1 + ρ2 A2 + ρ3 A3)ω

2WδW
)

dx
(14)

Wk
t =

∫ l

0

(
(G1 J1 + G2 J2 + G3 J3)θ

′δθ′ + (P1 IP,1 + P2 IP,2 + P3 IP,3)θ
′δθ′+

(Mzz,1 + Mzz,2 + Mzz,3)W ′δθ′ − (ρ1 IP,1 A1 + ρ2 IP,2 A2 + ρ3 IP,3 A3)ω
2θδθ

)
dx

(15)
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Figure 2. Discretized domain along the beam span using N elements and 3 DOF per node. The
dotted line is used to show that there are more elements than shown in the figure, before and after
the element at the middle.

The above expressions (14) and (15), also satisfies the principle of virtual work
(W = W f + Wt = 0, with WEXT = 0, for free vibrations), where:

W = W INT = ∑No. o f elements
K=1 Wk

= ∑No. o f elements
K=1 Wk

f + Wk
t (16)

2.1. The Layered Beam Finite Element (LBFEM) Formulation

The layered beam FEM (LBFEM) formulation is attained by introducing linear and
cubic Hermite polynomial interpolation functions to express the field and virtual variables
(W, θ, δW and δθ), expressed in terms of nodal variables, subsequently introduced in
expressions (14) and (15). This procedure leads to the LBFEM, with through-the-thickness
mass, [m]k, and stiffness, [k]k, matrices written as:

[k]k = [k]k
flex + [k]k

tor + [k]k
coupling (17)

where [k]k
flex and [k]k

tor are the element uncoupled flexural and torsional stiffness matrices,
respectively, and [k]k

Coupling is the element coupling stiffness matrix resulting from the end
moment, Mzz. Furthermore, each of the [k]k

flex and [k]k
tor are written as:

[k]k
flex = [k]k

flex-Static + [k]k
flex-Geo and [k]k

tor = [k]k
tor-Static + [k]k

tor-Geo (18)



Appl. Mech. 2022, 3 109

where [k]k
flex-Static and [k]k

tor-Static are the element uncoupled (constant) static flexural and
torsional stiffness matrices, respectively, and [k]k

flex-Geo and [k]k
tor-Geo are the corresponding

geometric stiffness matrices resulting from the axial load, P and end moment, Mzz.
Assembly of the through-the-thickness mass, [m]k, and stiffness, [k]k, matrices along

the beam length and the application of system boundary conditions leads to the following
linear eigenvalue problem:

〈δW〉 (K − ω2M){Wn} = 0 (19)

or
[K(ω)]{Wn} = 0, where K(ω)= [K] − ω2[M] (20)

where [K] and [M] are the system’s (global) stiffness and mass matrices, respectively,
and [K(ω)] is the so-called system Dynamic Stiffness Matric (DSM). Finally, the system’s
eigenvalues (i.e., natural frequencies) and their corresponding eigenvectors (i.e., natural
modes) are extracted by setting:

det[K(ω)] = 0 (21)

2.2. The Layered Beam Dynamic Finite Element (LBDFE)

As mentioned in the Section 1, DFE is an intermediate approach between the conven-
tional FEM and Dynamic Stiffness Matrix (DSM) Methods, with proven higher convergence
rates [19]. In the DFE formulation, the frequency-dependent trigonometric shape functions
adopted from DSM are used. To develop the problem-specific dynamic shape functions,
the solutions of uncoupled portions of the governing differential equations are used as the
basis functions of approximation space. The resulting frequency dependent shape functions
are then utilized to find the element frequency dependent element dynamic stiffness matrix.
To this end, further integrations by parts are applied on the discretized flexural integral
Equation (14) and torsional integral Equation (15), leading to the following forms:

Wk
f =

∫ xj+1

xj

(
(E1 I1 + E2 I2 + E3 I3)WδW ′′′′ − (P1 + P2 + P3)WδW ′′ + (Mzz,1 + Mzz,2 + Mzz,3)θ

′δW ′+

(ρ1 A1 + ρ2 A2 + ρ3 A3)ω
2WδW

)
dx−

[
(E1 I1 + E2 I2 + E3 I3)WδW ′′′ + (E1 I1 + E2 I2 + E3 I3)W ′δW ′′+ (P1 + P2 + P3)WδW ′

] (22)

Wk
t =

∫ xj+1

xj

(
(G1 J1 + G2 J2 + G3 J3)θδθ′′ + (P1 IP,1 + P2 IP,2 + P3 IP,3)θδθ′′ + (Mzz,1 + Mzz,2 + Mzz,3)W ′δθ′+

(ρ1 IP,1 A1 + ρ2 IP,2 A2 + ρ3 IP,3 A3)ω
2θδθ

)
+
[
(G1 J1 + G2 J2 + G3 J3)θδθ′ + (P1 IP,1 + P2 IP,2 + P3 IP,3)θδθ′

] (23)

Substituting, ξ = 1/l in both equations above results in the non-dimensionalized
element integral equations written as:

Wk
f (ξ) =

∫ 1
0

(
1
l3 (E1 I1 + E2 I2 + E3 I3)WδW ′′′′ − 1

l (P1 + P2 + P3)WδW ′′ + 1
l (Mzz,1 + Mzz,2 + Mzz,3)θ

′δW ′

+(ρ1 A1 + ρ2 A2 + ρ3 A3)ω
2WlδW

)
dξ + 1

l3 [−(E1 I1 + E2 I2 + E3 I3)WδW ′′′

+(E1 I1 + E2 I2 + E3 I3)W ′δW ′′ + 1
l (P1 + P2 + P3)WδW ′]

(24)

Wk
t (ξ) =

∫ 1
0

(
1
l (G1 J1 + G2 J2 + G3 J3)θδθ′′ + 1

l (P1 IP,1 + P2 IP,2 + P3 IP,3)θδθ′′ + 1
l (Mzz,1 + Mzz,2 + Mzz,3)W ′δθ′

+(ρ1 IP,1 A1 + ρ2 IP,2 A2 + ρ3 IP,3 A3)ω
2θlδθ

)
+ 1

l [(G1 J1 + G2 J2 + G3 J3)θδθ′ + (P1 IP,1 + P2 IP,2 + P3 IP,3)θδθ′]

(25)

The flexural and torsional basis functions used to develop the relevant dynamic
interpolation functions, respectively, are the solutions to the first (uncoupled) integral terms
in expressions (24) and (25). Thus, the non–nodal solution functions, W, and θ, and the test
functions, δW, and δθ, written in terms of generalized parameters 〈a〉, 〈δa〉, 〈b〉 and 〈δb〉,
are as follows:

W = 〈P (ξ)〉 f {a}, (26)

δW = 〈P (ξ)〉 f {δa}, (27)
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θ = 〈P (ξ)〉t {b}, (28)

δθ = 〈P (ξ)〉t {δb}, (29)

where the basis functions are defined as:

〈P (ξ)〉 f =

〈
cos(αξ);

sin(αξ)

α
;

cosh(βξ)− cos(αξ)

α2 + β2 ;
sinh(βξ)− sin(αξ)

α3 + β3

〉
(30)

〈P (ξ)〉t = 〈cos(τξ); sin(τξ)/τ〉. (31)

With the roots, α, β, and τ, defined as:

α =
√
|X2 |, β =

√
|X1 |,

τ =

√
(ρ1 IP,1 A1 + ρ2 IP,2 A2 + ρ3 IP,3 A3)ω2l2

(A1G1 J1 + A2G2 J2 + A3G3 J3) + (P1 IP,1 + P2 IP,2 + P3 IP,3)
(32)

and

X1 =

{
−B +

√
B2 − 4AC

}
2A

, X2 =

{
−B−

√
B2 − 4AC

}
2A

, (33)

where:

A =
(E1 I1 + E2 I2 + E3 I3)

l3 , B = −
(
(P1 + P2 + P3)

l

)
, C = −(m1 + m2 + m3)lω2 (34)

The basis function (30) and (31) are the solutions to the characteristic equations. When
the roots, α, β, and τ, of the characteristic equations tend to zero, the resulting basis
functions are like those of a standard beam element in the classical FEM, where bending
and torsional displacements are approximated using cubic Hermite polynomials and linear
functions, respectively. Replacing the generalized parameters, 〈a〉, 〈δa〉, 〈b〉 and 〈δb〉, in
Equation (27) through (29) with the nodal variables,

〈
W1W ′1W2W ′2

〉
,
〈
δW1 δW ′1 δW2 δW ′2

〉
,

〈θ1θ2〉, and 〈δθ1δθ2〉, respectively, results in [29]:

{Wn} = [Pn] f {a} {δWn} = [Pn] f {δa} (35)

{θn} = [Pn]t{b} {δθn} = [Pn]t{δb} (36)

where [Pn] f and [Pn]t matrices are defined as:

[Pn] f =


1 0 0 0
0 1 0 (β−α)

(α3+β3)

cos(α) sin(α)
α

[cosh(β)−cos(α)]
(α2+β2)

[sinh(β)−sin(α)]
(α3+β3)

−αsin(α) cos(α) [βsinh(β)+αsin(α)]
(α2+β2)

[βcosh(β)−αcos(α)]
(α3+β3)

 (37)

[Pn]t =

[
1 0

cos(τ) sin(τ)
τ

]
(38)

Expressions (26) through (29), (35), (36), and the [Pn,f], and [Pn,t] matrices above are
combined in the following form to construct nodal approximations for flexural displace-
ment, W(ξ), and torsion displacement, θ(ξ).

W(ξ) = 〈P (ξ)〉 f [Pn] f
−1{Wn} = 〈N (ξ)〉 f {Wn} (39)

θ(ξ) = 〈P (ξ)〉t[Pn]t
−1{θn} = 〈N (ξ)〉t{θn} (40)
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In expressions (39) and (40), 〈N (ξ)〉 f , and 〈N (ξ)〉t , are the vectors of frequency-
dependent trigonometric shape functions for flexure and torsion, respectively.
Equations (39) and (40) can also be re-written as:{

W(ξ)
θ(ξ)

}
= [N]{wn} (41)

where,

[N] =

[
N1 f (ω) N2 f (ω) 0 N3 f (ω) N4 f (ω) 0

0 0 N1t(ω) 0 0 N2t(ω)

]
(42)

and
{wn} =

〈
W1W1

′θ1W2W2
′θ2
〉T (43)

The expressions for the frequency-dependent (dynamic) trigonometric shape functions
for flexure, as also reported by [29–31], are:

N1 f (ω) =
(αβ)

D f
{−cos(αξ) + cos(α(1− ξ))cosh(β) + cosh(β(1− ξ))cos(α)−

cosh(βξ)− β

α
sin(α(1− ξ))sinh(β) +

α

β
sin(α)sinh(β(1− ξ))},

(44)

N2 f (ω) =
1

D f
{β[cosh(β(1− ξ))sin(α)− cosh(β)sin(α(1− ξ))− sin(αξ)]+

α[cos(α(1− ξ))sinh(β)− cos(α) sinh(β(1− ξ))− sinh(βξ)]},
(45)

N3 f (ω) =
(αβ)

D f
{−cos(α(1− ξ)) + cos(αξ)cosh(β)− cosh(β(1− ξ))

+cos(α)cosh(βξ)− β

α
sin(αξ)sinh(β) +

α

β
sin(α)sinh(βξ)},

(46)

N4 f (ω) =
1

D f
{β[−cosh(βξ)sin(α) + sin(α(1− ξ)) + cosh(β)sin(αξ)]

+α[−cos(αξ)sinh(β) + sinh(β(1− ξ)) + cos(α)sinh(βξ)]}.
(47)

where,

D f = (αβ)

{
−2(1− cos(α)cosh(β)) +

(
α2 − β2

αβ

)
sin(α)sinh(β)

}
(48)

and the dynamic trigonometric shape functions for torsion are:

N1t(ω) = cos(τξ)− cos(τ)
sin(τξ)

Dt
(49)

N2t(ω) =
sin(τξ)

Dt
(50)

with,
Dt = sin(τ) (51)

Using element integral expressions (24) and (25) and the dynamic shape functions,
(44) through (51), the through-the-thickness element Layered Beam Dynamic Finite Ele-
ment (LBDFE) matrix is obtained. The element stiffness matrix, [K(ω)]k consists of two
coupled dynamic stiffness matrices, [K(ω)]k

BT,c and [K(ω)]k
TB,c symbolized collectively as

[K(ω)]k
c, and four uncoupled dynamic stiffness matrices, [K(ω)]k

u1, [K(ω)]k
u2, [K(ω)]k

u3
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and [K(ω)]k
u4 jointly denoted as, [K(ω))]k

u. The four uncoupled element stiffness matrices
are as follows:

[K(ω)]ku1 =
EI
L3


N′1 f N′′1 f N′1 f N′′2 f N′1 f N′′3 f N′1 f N′′4 f
N′2 f N′′1 f N′2 f N′′2 f N′2 f N′′3 f N′2 f N′′4 f
N′3 f N′′1 f N′3 f N′′2 f N′3 f N′′3 f N′3 f N′′4 f
N′4 f N′′1 f N′4 f N′′2 f N′4 f N′′3 f N′4 f N′′4 f


∣∣∣∣∣
1

0

(52)

[K(ω)]ku2 =
−EI
L3


N1 f N′′′1 f N1 f N′′′2 f N1 f N′′′3 f N1 f N′′′4 f
N2 f N′′′1 f N2 f N′′′2 f N2 f N′′′3 f N2 f N′′′4 f
N3 f N′′′1 f N3 f N′′′2 f N3 f N′′′3 f N3 f N′′′4 f
N4 f N′′′1 f N4 f N′′′2 f N4 f N′′′3 f N4 f N′′′4 f


∣∣∣∣∣
1

0

(53)

[K(ω)]ku3 =
P
L


N1 f N′1 f N1 f N′2 f N1 f N′3 f N1 f N′4 f
N2 f N′1 f N2 f N′2 f N2 f N′3 f N2 f N′4 f
N3 f N′1 f N3 f N′2 f N3 f N′3 f N3 f N′4 f
N4 f N′1 f N4 f N′2 f N4 f N′3 f N4 f N′4 f


∣∣∣∣∣
1

0

(54)

[K(ω)]ku4 =
1
L

(
GJ +

PIP
A

)[
N1tN′1t N1tN′2t
N2tN′1t N2tN′2t

]∣∣∣∣1
0

(55)

The two coupled element matrices are as follows:

[K(ω)]kBT,c =
∫ 1

0

M
L

[
N′1tN′1 f N′1tN′2 f N′1tN′3 f N′1tN′4 f
N′2tN′1 f N′2tN′2 f N′2tN′3 f N′2tN′4 f

]
dξ (56)

[K(ω)]kTB,c =
∫ 1

0

M
L


N′1 f N′1t
N′2 f N′1t

N′1 f N′2t
N′2 f N′2t

N′3 f N′1t
N′4 f N′1t

N′3 f N′2t
N′4 f N′2t

 dξ (57)

The through-the-thickness element dynamic stiffness matrix, [K(ω)]k, is determined by
adding these six coupled and uncoupled sub-matrices. Finally, the system’s global dynamic
stiffness matrix, [K(ω)], is obtained by assembling all the through-the-thickness element
matrices along the beam length and applying the system boundary conditions (carried
out using a code developed in MATLAB (2017), Natick, MA, USA). This procedure, also
satisfying the principle of virtual work, leads to:

〈δWn〉
[(

K−ω2M
]
{Wn} = 0, (58)

For arbitrary virtual displacement, 〈δWn〉, expression (58) results in a non-linear
eigenvalue problem written as:

[KDFE(ω)]{Wn} = 0 (59)

which is solved using any standard determinant search method, or Wittrick–Williams
(W-W) algorithm [34], to obtain the eigenvalue, ω, and eigenmodes, {Wn}, of the structure.

3. Results and Discussion

Numerical tests were performed to confirm the predictability, accuracy and practical
applicability of the proposed methods. Both the LBFEM and LBDFE formulations were
first validated using the limited available experimental data [35] and numerical exam-
ples of prestressed multi-layer beams presented in earlier works by authors [29,30]. The
validations included investigations on critical buckling end moment versus compressive
force, critical buckling compressive force versus end moment, and variation of critical
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buckling compressive force with end moment for single-layer beams of different boundary
conditions.

In what follows, the application of the theory and the DFE formulation to the free
vibration analysis of a 3-layer steel-rubber-steel beam, a prestressed three-layered Fiber-
Metal Laminated (FML), and two unidirectional laminated glass/epoxy composite beams
is presented. The DFE results are compared with other methods and the effects of various
combined axial loads and end moments on the stiffness and natural frequencies of the
structure are examined and discussed.

3.1. Steel-Rubber-Steel Layered Beam

To validate the results of sandwich beam models with a better benchmark, an experi-
mental study by Banerjee et al. [35], is selected. The parameters of the steel-rubber-steel
sandwich beam used in this study are as follows. Thicknesses are: steel (1.5 mm)–rubber
(18 mm)–steel (2.4 mm), length of the sandwich beam is 500 mm and width 50 mm for
each layer. Their experimental modal testing set up included an impact hammer kit and
an accelerometer. In all of their tests, the sandwich beam is cantilevered with one end
fully built-in to prevent any displacements. The accelerometer is set at a fixed position
which is considered as the reference point while the hammer impact point is changed
to several points to create the excitation forces on the test sample, corresponding to the
allowed degrees of freedom in their model. Banerjee et al. [35] also developed a DSM
model and confirmed their results with experimental results. The comparison between the
experimental results, DSM, LBDFE, LBFEM and method of homogenization are presented
in Table 1 and the relative error for all methods with respect to experimental results are
shown in Table 2.

Table 1. Comparison between experimental results [35], DSM [35], LBDFE, LBFEM and homogeniza-
tion methods with P = 0 and Mzz = 0 with cantilevered boundary condition.

Natural Freq.
No.

LBDFE (Hz)
(5 Elements)

LBFEM (Hz)
(5 Elements)

Homogen. (Hz)
(5 Elements)

Experiment
(Hz) [35]

DSM (Hz)
[35]

1 10.62 10.67 10.71 9.04 10.62
2 33.88 36.12 38.48 29.38 33.88
3 63.73 69.08 72.71 53.75 63.73

Table 2. The relative errors of LBDFE, LBFEM and homogenization methods with respect to experi-
mental results [35].

Natural Freq. No. LBDFE (Hz)
(5 Elements)

LBFEM (Hz)
(5 Elements)

Homogen. (Hz)
(5 Elements)

1 0.1748 0.1803 0.1847
2 0.1532 0.2294 0.3097
3 0.1857 0.2852 0.3527

3.2. Cantilever Three-Layered Fiber-Metal Laminated (FML) Beam

Consider a three-layered Fiber-Metal Laminated (FML) beam of rectangular cross-
section, length of L = 8 m, width of 0.12 m and 0.06 m of height (thickness). The top and
bottom layers are assumed to be glass epoxy composite with fiber angle of +90◦. The fiber
properties include: Ef = 275.6 GPa, Gf = 114.8 GPa, νf = 0.2, ρf = 1900 kg/m3 and matrix
properties include: Em = 2.76 GPa, Gm = 1.036 GPa, νm = 0.33, ρm = 1600 kg/m3 and the
volume fraction (ratio of fiber volume to total volume) of both layers is considered 0.8. The
equivalent properties are found to be Ec = 221 GPa and ρc = 1840 kg/m3. The middle layer
is made of aluminum (EAl = 70 GPa and ρAl = 2700 kg/m3). The thickness of all the three
FRP and aluminum layers is the same and equal to 0.02 m. Table 1 presents the fundamental
frequency of the system for clamped-free boundary condition, and various axial loads and
end moment of 52.5 KN·m, obtained from the proposed LBDFE, LBFEM, homogenization
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method and ANSYS. For comparison purposes, the ANSYS results obtained using a 20-
element model are used as the benchmark. The element used in this analysis is SOLID186.
This element type is a high order 3D, 20-node, solid element. This element exhibits quadratic
displacement behavior. Each node in the element has three degrees of freedom, translation
in the nodal x, y, and z directions. To have the prestressed effects of axial load and end
moment in modal analysis of ANSYS, the model is first solved in static mode with the
prestress option set on active and then the model is solved in modal analysis mode. As can
be observed from Table 3, excellent agreement is found between the LBDFE, LBFEM, and
homogenization method and ANSYS results.

Table 3. Fundamental frequency of prestressed cantilevered FML beam in Hertz, subjected to various
axial loads and end moment of 52.5 KN·m.

Tensile Force
(KN)

LBDFE
(5 Elements)

LBFEM
(5 Elements)

ANSYS
(20 Elements)

Homogenization
(5 Elements)

0 0.254 0.258 0.254 0.260
17.5 0.941 0.945 0.938 0.948
34.9 1.251 1.254 1.249 1.259
52.3 1.508 1.511 1.502 1.514

The convergence tests for the two proposed layered beam FEM and DFE formulations
are shown in Figure 3, where the DFE rates of convergence surpass FEM by almost a factor
of five. An analysis is also carried out to investigate the effects of both axial force and end
moment (combined) on the fundamental frequencies of the beam. Figure 4 illustrates the
variation of the first natural frequency with tensile axial force and end moment using the
DFE method.
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Figure 3. The convergence study for the two proposed LBFEM and LBDFE formulations; relative
error of fundamental frequency for cantilevered FML three-layer beam subjected to an axial load of
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It is possible to use the modal analysis to find critical axial force or critical end moment
causing buckling by keeping one of them constant and increasing the other one until the
fundamental frequency vanishes, i.e., zero stiffness, or static (structural) instability, which
means structural failure. The result of this analysis is presented in Figure 5. As the end
moment increases, the structure becomes less rigid which requires a lower axial force
to buckle. To validate the results of DFE buckling analysis, in Figure 6 a comparison is
presented between experimental study [36] and DFE results for different fiber orientations
with Mzz = 0.
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3.3. Cantilever Three-Layered Laminated Composite Beam

In what follows, two cantilevered uniform three-layered composite beams made
of unidirectional plies of glass/epoxy composite material, with fiber angles 0◦/+90◦/0◦

(layup 1) and +90◦/0◦/+90◦ (layup 2) are investigated. The beams have a length of
L = 0.1905 m, a total thickness of 3.18 mm, a width of 12.7 mm, and the thickness of all
three layers are equal. The fiber properties are as follows: Ef = 275.6 GPa, Gf = 114.8 GPa,
νf = 0.2, ρf = 1900 kg/m3 and matrix properties are: Em = 2.76 GPa, Gm = 1.036 GPa, νm = 0.33,
ρm = 1600 kg/m3 and the volume fraction of both layers is 0.8. The free vibration analysis
of the system is performed using both LBFEM and LBDFE methods as well as ANSYS. The
first five natural frequencies of laminated composite beams are shown in Table 4.

Table 4. First five natural frequencies of cantilevered, preloaded, three-layer, unidirectional composite
beams (Layups 1 and 2) in Hertz, obtained from 5-element LBDFE and LBFEM, and 20-element
ANSYS models, subjected to an axial load of 1.85 MN and end moment of 6.14 MN·m.

Nat. Freq.
[Hz]

LBDFE
(5 Elements)

LBFEM
(5 Elements)

ANSYS
(20 Elements)

layup 1 layup 2 layup 1 layup 2 layup 1 layup 2
1st 79.84 72.35 79.90 72.42 79.84 72.35
2nd 328.05 299.75 342.62 312.04 326.91 298.73
3rd 765.28 736.82 790.48 754.44 757.86 729.74
4th 1274.45 1211.73 1329.06 1266.93 1262.36 1198.44
5th 1387.52 1324.13 1428.38 1377.54 1374.86 1310.99

Based on the frequency results presented in Table 3, the LBDFE frequency values for
both layups are in excellent agreement with those obtained from ANSYS and LBFEM, with
the DFE rates of convergence surpassing FEM. As can be observed from Table 3, for the
fundamental frequency the LBDFE and ANSYS results match perfectly, whereas the LBFEM
shows a minor difference of less than 0.1%. As expected, as the frequency number increases,
the difference between the presented methods and benchmark data increases. Finally, the
maximum difference between the LBDFE and ANSYS results (for the 5th frequency) is less
than 1%, whereas, for the same number of elements, the LBFEM shows a larger difference
of 3.3%.

A parametric study is also carried out to examine the variation of the system’s natural
frequencies with axial load and end moment. Change of the fundamental frequency of
cantilevered, preloaded, three-layer, unidirectional composite beam (Layup 1) obtained
from a 5-element LBDFE model, with axial load and end moment is presented in Figure 7.
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As can be observed, when the axial force is increased, the natural frequency decreases.
However, as the end moment is increased, the system’s frequency decreases.
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Figure 7. Fundamental frequency of cantilevered, preloaded, three-layer, unidirectional composite
beam (Layup 1) obtained from a 5-element LBDFE model, subjected to various axial loads and end
moments.

Figures 8 and 9, respectively, show bending and torsional components of the first five
mode shapes of the cantilevered, preloaded, three-layer, unidirectional composite beam
(Layup 1) obtained using a 20-element LBDFE model, subjected to an axial load of 1.85 MN
and end moment of 6.14 MN·m. The horizontal axis represents the normalized distance
from the fixed end of the beam (x/L). As can be seen from the figures, the first three and
fifth modes are predominantly bending with a slight influence of torsion, whereas the third
mode has a predominant torsional character.
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are compared with those obtained from the conventional FEM (ANSYS) as well as the 
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while DFE has a higher rate of convergence compared to the FEM method, which makes 
DFE the most efficient method. Considering the benchmark, the estimated error of the 
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Figure 9. Torsion component of the first five mode shapes of the cantilevered, preloaded, three-layer,
unidirectional composite beam (Layup 1) obtained using a 20-element LBDFE model, subjected to an
axial load of 1.85 MN and end moment of 6.14 MN·m.

4. Discussion

The free vibration analysis of Fiber-Metal Laminated (FML) and unidirectional com-
posite beams subjected to axial force and end moment is presented using layered Finite
Element Method (FEM) and Dynamic Finite Element (DFE) models. The frequency results
are compared with those obtained from the conventional FEM (ANSYS) as well as the
homogenization technique. Based on the results shown in Table 1, the presented layered
FEM method has higher a rate of convergence compared to the method of homogenization
while DFE has a higher rate of convergence compared to the FEM method, which makes
DFE the most efficient method. Considering the benchmark, the estimated error of the
FML beam fundamental frequency for the DFE method using five elements along the beam
length is almost zero. This error for the layered FEM method using five elements, is around
0.64% while for the method of homogenization using the same number of longitudinal
elements it is 2.24%. As expected, and with reference to Figures 3 and 6 (three-layer unidi-
rectional glass/epoxy composite beam, layup 1), the tensile axial load increases the natural
frequencies of the beam, indicating an increase in the stiffness of the beam. When the
end moment is increased, the natural frequencies reduce, indicating a reduction in the
stiffness of the beam. If the end moment is held constant and the tensile load is increased,
the natural frequencies increase indicating an increase in the beam stiffness. Conversely,
if the tensile load is held constant and the end moment is increased, the beam stiffness
reduces. Considering Figures 7 and 8, the coupled vibration of the beam is found to be
predominantly flexural in the first few natural frequencies (the first three, for the case
studied here) and torsion becomes predominant at a higher natural frequency starting from
the fourth mode.

In summary, in all cases studied in this paper, the convergence rates obtained from
frequency-dependent Dynamic Finite Element (DFE) formulation are found to surpass those
found from the conventional FEM, which in turn surpass the method of homogenization.
The higher convergence rate of DFE is mainly attributed to the usage of the solutions to the
uncoupled part of equations as the basis functions of approximation space. In comparison
with conventional FEM, which uses simple polynomial shape functions, the interpolation
functions derived from these solutions provide much better approximations for element
displacements expressed in terms of nodal displacements. This higher rate of convergence
means that in order to reach a specific accuracy, DFE requires a much smaller number of
elements than FEM. This might not look like a huge advantage in the analysis of simple
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structures like the ones studied here but in large–scale designs of complex systems using
DFE would lead to much less computation time.

It is also worth mentioning that the developed conventional and dynamic FEMs here
have advantages over FEM based software, ANSYS in modeling prestressed beams, since
here the axial force and end moment are included in the equations of motion. Therefore,
the developed FEMs give the natural frequency and mode shapes of vibration directly. To
use the modal analysis in ANSYS for a prestressed structure, however, one needs to first
solve the problem statically. Then, the results of static analysis are to be used to find the
new stiffness of the prestressed structure, which will be used later in modal mode to find
natural frequencies.

In this study, the effect of interlayer slip was not considered. So, as a proposed future
work, the interlayer slip can be added to the DFE model of layered beams subjected to axial
force and end moment.
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