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Abstract: Stiffened panels constitute structural assemblies of the entire ship hull, i.e., double bottom,
side shell, deck areas, etc. Prescriptive dimensioning of the stiffeners (web thickness and height and
flange thickness and breadth) is solely based on the application of beam bending theories. This work
is divided into two parts. The first part involves the assessment of the structural response of one-way
(single-bay) stiffened panels under uniform pressure. The objective is to evaluate the effectiveness of
alternative approaches in obtaining accurate secondary stress fields. Both state-of-the-art analytical
solutions (Paik, Schade, CSR, Miller) and numerical calculation tools (finite element analysis (FEA))
are employed and compared for this purpose. When it comes to cross-stiffened panels, numerical
methods are usually used within the design process which is time demanding. The second part of
this work focuses on the development of a fast, yet effective, prescriptive approach. This approach
will allow the dimensioning of the longitudinal stiffeners by considering the secondary stress field.
Combining finite element analysis and the Euler–Bernoulli bending theory, the effect of the transverse
stiffeners to the longitudinal stiffeners is examined in order to estimate the type of support on the
boundaries of the transverse stiffeners. Determining the type of support, will make it possible to
apply the classical formula of bending stress instead of using finite element analysis, thus limiting the
computational cost. Preliminary calculations show that most of the examined cases may be treated as
fully clamped beams subjected to uniform pressure.

Keywords: stiffened panels; shear lag; beam bending; finite element analysis (FEA)

1. Introduction

Stiffness and strength resistance of marine constructions is assessed through the
application of strategies and theories for thin-walled slender structures, since they are built
by open or closed cell arrangements of welded plates. Relatively stiff composite beam
profiles are welded on platings to counteract the low inherent slenderness of the platings.
Local dimensioning of ship hull structures (thicknesses, spacings, profiles, etc.) is based
upon a design process of elementary sections that form a structural unit denoted as a
stiffened panel. It is typical to find unstiffened panels (stiffeners are placed only along one
main dimension) in almost all areas of bulkers, tankers and containerships, as shown in
Figure 1a. Car carriers and passenger ships have several twin decks which are mostly cross-
stiffened, i.e., groups of stiffeners of different rigidity are placed in both main directions of
the stiffening area (see Figure 1b). The level of stiffening and selected scantlings results from
specifications and constraints posed in the design, erection, operation and maintenance
phases. In ship hull structures, dimensioning of stiffened panels with respect to elastic
analysis seems to result at higher scantling requirements compared to dimensioning against
structural instability (buckling), [1]. Therefore, by employing elastic design followed by
buckling assessment, design iterations that require important modifications in structural
arrangement and geometry are eliminated.
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Figure 1. One-way (single-bay) stiffened panel (a) and cross-stiffened panel (b). 

For elastic design, local loads (e.g., hydrostatic and hydrodynamic pressure) com-
bined with global loads (hull girder load effects) are taken into consideration [2]. Hull 
girder bending and torsion stress effects, known as principal stresses, σ1, are usually 
thought to have a certain linear distribution along the ship’s depth (distance z) in the be-
ginning of the design. This may be calculated by assuming that the neutral axis (NA) of 
the ship’s transverse section is typically located somewhere between 30–40% of the ship’s 
molded depth, measured from the bottom-line and taking into consideration an optimal 
design where the deck is fully utilized. Principal normal stresses are described by Navier’s 
bending formula as: 
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where Mhg and Ihg correspond to the hull-girder bending moment and hull-girder moment 
of inertia at a given longitudinal station, respectively. 

From the local perspective, bending stresses produced by pressure loads are engi-
neering wise split into the generation of secondary (σ2) and tertiary stresses (σ3). The latter 
are generated due to the double curvature of the unstiffened (unsupported) plate area, 
and plate bending theories (Love, Mindlin, etc.) may well be applied. Secondary stresses 
develop because of the bending curvature of the stiffener with its attached plating, and 
beam theories apply accordingly, i.e., Euler, Navier, Timoshenko, etc. In general, one can-
not expect that the actual stress state is equal to σ1 + σ2+ σ3, and for this purpose the notion 
of such stress decomposition is used in dimensioning of stiffened panels in an uncoupled 
fashion, [3]. Once stiffener spacing is predefined, plate bending theory (or sometimes elas-
toplastic beam bending of a strip of the plate taken from the short dimension of the plate) 
is used for calculating the minimum required thickness of a certain plate, tp, as per CSR, 
which corresponds at the tertiary stress analysis: 
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where αp is a correction factor, s is the stiffener spacing, P is the applied pressure, χ and 
Ca are coefficients and REh is the permissible material resistance. In ship structural design, 

Figure 1. One-way (single-bay) stiffened panel (a) and cross-stiffened panel (b).

For elastic design, local loads (e.g., hydrostatic and hydrodynamic pressure) combined
with global loads (hull girder load effects) are taken into consideration [2]. Hull girder
bending and torsion stress effects, known as principal stresses, σ1, are usually thought to
have a certain linear distribution along the ship’s depth (distance z) in the beginning of
the design. This may be calculated by assuming that the neutral axis (NA) of the ship’s
transverse section is typically located somewhere between 30–40% of the ship’s molded
depth, measured from the bottom-line and taking into consideration an optimal design
where the deck is fully utilized. Principal normal stresses are described by Navier’s bending
formula as:

σ1 =
Mhg

Ihg
z (1)

where Mhg and Ihg correspond to the hull-girder bending moment and hull-girder moment
of inertia at a given longitudinal station, respectively.

From the local perspective, bending stresses produced by pressure loads are engineer-
ing wise split into the generation of secondary (σ2) and tertiary stresses (σ3). The latter
are generated due to the double curvature of the unstiffened (unsupported) plate area,
and plate bending theories (Love, Mindlin, etc.) may well be applied. Secondary stresses
develop because of the bending curvature of the stiffener with its attached plating, and
beam theories apply accordingly, i.e., Euler, Navier, Timoshenko, etc. In general, one cannot
expect that the actual stress state is equal to σ1 + σ2 + σ3, and for this purpose the notion
of such stress decomposition is used in dimensioning of stiffened panels in an uncoupled
fashion, [3]. Once stiffener spacing is predefined, plate bending theory (or sometimes
elastoplastic beam bending of a strip of the plate taken from the short dimension of the
plate) is used for calculating the minimum required thickness of a certain plate, tp, as per
CSR, which corresponds at the tertiary stress analysis:

tp = 0.0158 αp s

√
P

χ Ca REh
(2)

where αp is a correction factor, s is the stiffener spacing, P is the applied pressure, χ and
Ca are coefficients and REh is the permissible material resistance. In ship structural design,
as dictated by the rules and common industrial practice, dynamic loads arising from, e.g.,
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waves are treated as static loads with the use of partial safety factors. This strategy is
considered herein as well.

The periodicity (symmetry) in the stiffened panel geometry of Figure 1 is accompanied
by periodicity in the stress field of the stiffened panel which in turn allows for solving the
problem in one dimension, i.e., by considering a beam with an effective and representative
cross-section and applying the bending theory. The elastic resistance of a given stiffener
(profile and scantlings) is assessed through the application of secondary stresses, by defining
a minimum section modulus requirement, Zmin:

Zmin =
P s l2

bdg

fbdg χ CS ReH
(3)

where lbdg is the effective beam span, and f bdg and Cs are coefficients.
The corresponding cross-section used in the beam analysis for comparing against

Equation (3) needs to be defined. Periodicity implies that the attached plating with width
equal to the stiffener spacing, s, is a geometric calculation that may overestimate the panel’s
strength. The reason for the overestimation is associated with the phenomenon of shear lag
which pollutes the uniformly distributed normal stress field assumed by classical bending
theory, Timoshenko and Goodier (1951). This is because the Euler–Bernoulli bending
theory of beams ignores the warping of the elements of the cross-section due to the shear
stresses, which give rise to an axial warping stress field. The reason is that uniform pressure
loads lead to the creation of both axial bending stresses and shear stresses that distort the
cross-section. As a result, the real distribution along the section’s width is nonuniform.
This phenomenon is referred to as shear lag, and it is dominant in thin-walled sections with
elements having at an angle between them. Hence, a correction that takes into account the
shear lag effect at reduced effective widths is introduced. The notion of the effective width
is introduced, denoted as be, where only part of the stiffener spacing (be < s) carries the
otherwise nonuniform secondary bending stresses, in a uniform manner as illustratively
shown in Figure 2.
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Figure 2. Notion of the effective width, be, of the attached plating in stiffener bending. This figure 
shows a representative section of a stiffened plate with “Tee” profile stiffeners that have a specific 
spacing, s. The shear lag effect reduces the actual width and a corresponding static equivalent stress, 
σmax, is assumed. 

Once the real nonuniform bending stressdistribution, σx, is derived by modeling the 
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Figure 2. Notion of the effective width, be, of the attached plating in stiffener bending. This figure
shows a representative section of a stiffened plate with “Tee” profile stiffeners that have a specific
spacing, s. The shear lag effect reduces the actual width and a corresponding static equivalent stress,
σmax, is assumed.

Once the real nonuniform bending stressdistribution, σx, is derived by modeling the
shear lag effect, employment of static equilibrium over the attached plating results inthe
following formula, [4]:

be =

s/2∫
−s/2

σxdy

σmax
(4)

where σmax is the maximum stress found within the integral bounds and is applied at the
effective width of the stiffened plate (reduced spacing). With be known, the actual section
modulus of the stiffener with the effective attached plating may be easily calculated.

Zact = f (be, other scantlings) (5)
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It is evident that knowledge of the plate’s effective width allows for the application
of the classical bending theory. In practical design there is no need to find the real stress
distribution to apply Equation (4) but be is given with respect to other stiffener dimensions.
However, different approaches for assessing the shear lag problem and hence arriving
at different effective width values do exist in the literature. Traditional works date back
to the 1950s with the pioneering efforts of [5] in general mechanics and by Schade [6] in
naval architecture. Though shear lag is an old problem, there is still ongoing research in
the field that has applications in civil infrastructure apart from naval architecture. Some
indicative works published within the past 20 years are presented in [7–14] and Miller
(1976) (The formulation and analysis in Miller (1976) is provided in detail and referenced
accordingly to Miller’s solution in the book of P. Caridis, Strength Analysis of Ship Structures,
2017, Caridis publishing.). Some recent works are presented in [15–17].

The current work has a twofold objective with special focus on the elastic strength
analysis of one-way (single-bay) and cross-stiffened panels. The first objective is associated
with the assessment of four approaches (two analytical, one semiempirical and one rule-
based) that tackle the shear lag problem and allow for the application of Equation (4), hence
resulting in four alternative effective width relations. Finite element simulations were
performed in order to consider reference results for comparison purposes. An additional
semianalytical calculation model for the effective width was produced based on fitting
polynomials on complex closed-form solutions. The second objective is to simplify the
strength analysis of cross-stiffened panels by considering a reduced one-dimensional
problem, where the rotational stiffness posed by the transverse stiffeners is mathematically
modeled. The question that is to be answered is the identification of the relation between
the stiffener’s rigidity which will be imposed as boundary restraints to the beam ends
under analysis. This problem is tackled through FEA and metamodeling.

2. One-Way (Single-Bay) Stiffened Panel

Based on one-way (single-bay) stiffened panels, this section deals with the assessment
of four approaches used in the analysis of the shear lag problem and consequently arrives at
descriptions of the calculation of the effective width used in stiffened panels. Corresponding
formulas found in [2–4] are selected for comparison purposes. These specific works are
chosen as the most popular ones cited in textbooks and class rules.

2.1. Analytical Solution of Miller

The following approach that was initially proposed by Miller (1976) [4], is to the
authors’ best knowledge the most intuitive one with respect to the employed rules of
mechanics that describe the involved physical mechanisms well. The normal stress field
corrected for shear distortions (shear lag effect) is given by the linear superposition of the
following magnitudes.

σreal(x, s) = σb(z) + σshear lag(x, s)− σforce
shear lag(x)− σmoment

shear lag(x, z) (6)

Magnitude σb(z) denotes the bending axial stresses (σb = Mz/I). Detailed derivation
of σshearlag(x,s) is provided in Appendix A. Superposition of the preceding magnitudes
does not guarantee equilibrium of forces and moments. For this reason, the out of balance
equivalent force σforce

shear lag(x) and moment σmoment
shear lag(x, z) counterparts may be calculated as:

σforce
shear lag(x) =

∫
s

σshear lag(s, x)ds

A
=

E∗ w(x)
GI

∫
A

∫
s

Q(s)
I tel.

dsdA

 (7)

σmoment
shear lag(x, z) =

∫
s

σshear lag(s, x) z ds z

I
=

E∗ w(x)z
GI

∫
A

∫
s

Q(s)
Itel.

ds z dA

 (8)
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2.2. Alternative Analytical Solutions

The most common analytical solutions used within the analysis and design of stiffened
panels are from [3]. The classical theory of elasticity is applied as per Timoshenko and
Goodier (1951) in [5]. A 2D stress state has been considered within the section’s elements.
The compatibility equation has been solved for the Airy’s stress function. Stiff transverse
frames have been considered, and harmonic solutions to the displacement field have been
undertaken. A uniform pressure has been considered as well. Eventually the obtained
stress field maximum value and distribution have been used within Equation (4) to generate
an expression for the notion of the effective breadth of the attached plating as given below:

be =
4Lsinh2(π s/L)

π(1 + ν)[(3− v)sinh(2π s/L)− 2(1 + v)(πs/L)]
(9)

The rule-based design as per Common Structural Rules (CSR 2021) provides the
following expression for the effective width to be considered in the analysis:

be = s min

 1.12
1+ 1.75(

L
s
√

3

)1.8
, 1

 for L
s
√

3
≥ 1

be = 0.407 L
s
√

3
for L

s
√

3
≤ 1

(10)

As per the technical background of the CSR, the preceding equation is obtained based
on the theoretical work performed in [6,18]. It is stated that FE simulations have been used
to verify the equations.

Schade’s expression is provided in a curve form [1] where an analytical solution based
on the theory of elasticity is applied again by considering a 2D stress field.

2.3. Assessment of Analytical Solutions

Miller’s solution is not directly generalized to provide relations in the form be/s = f (s/L).
In this respect, a representative sample of 10 realistic scantlings was taken from bulk
carriers and tankers. Table 1 lists corresponding dimensions for T shape profiles and
corresponding spacing and plate thickness. For each single case, the formulation provided
in Section 2.1 was applied and the corresponding real stress field was evaluated through
Equation (6). The maximum stress σmax was identified and consequently Equation (4)
was applied to derive the effective width per case. The corresponding results are plotted
in Figure 3 for all 10 cases. For practical purposes the lower and upper bound solutions
(envelope) have been fitted with quartic polynomials that yield an R-squared statistic
almost equal to unity through the method of least squares. Each curve corresponds to
specified scantlings as given in Table 1 and is numerically generated, i.e., a closed-form
solution of the be/s = f (s/Lo) is not provided. However, to produce an analytical formula
for each case, a polynomial was used. The lower bound corresponds to the case that has
yielded the lowest effective width. This has been done in an effort to generalize over the
population from the sample of the 10selected cases. The lower bound could be potentially
used for design purposes. Figure 4 compares Miller’s solution with the corresponding
ones obtained by Paik (Equation (9)), CSR (Equation (10)) and Schade’s solution digitized
from [1]. It is evident that there are significant differences between each case, showing the
ambiguity of precisely defining the effective width for describing the secondary normal
bending stresses.

The following section is dedicated to providing a comparative assessment of the
effectiveness of each employed method for obtaining the effective width of a stiffened panel
with a special focus on stiffened panels with T profile sections.
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Table 1. Dimensions of “Tee” profile stiffened panels.

Stiffener
Spacing

(mm)

Thickness of
Plate (mm)

Height of
Web (mm)

Thickness of
Web (mm)

Width of
Flange (mm)

Thickness of
Flange (mm)

800 20 300 15 200 18
600 12 200 10 50 10
750 20 280 14 90 14
900 28 340 15 110 15
650 12 240 12 70 12
700 15 300 15 100 15
800 18 380 17 130 17
900 25 425 18 150 18
760 16 350 15 150 15
830 19 430 18 150 18
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2.4. Assessment of the Analytical Solutions

As already mentioned, the notion of secondary stresses is an engineering approach
used in the dimensioning process of stiffened panels. Therefore, identifying the correct
effective width magnitude is not always a straightforward procedure, since tertiary and
secondary stresses develop simultaneously.

To provide a quantitative comparison among the four considered approaches in this
work, corresponding results from a finite element (FE) analysis have been considered
to act as a reference case. Two stiffened-panel geometries taken from an actual bulk
carrier with 180,000 TDW (292 m overall length), were modeled to serve this purpose.
Both panels are stiffened with “Tee” profile stiffeners. Three longitudinal stiffeners exist
between the girders of the double bottom. One panel comes from the bottom plating of
the vessel (475 × 9 + 150 × 15, plate thickness = 19.5 mm, stiffener spacing = 850 mm and
floor spacing = 3700 mm), and one comes from the topside wing tank (450 × 9 + 150 ×18,
plate thickness = 26 mm, stiffener spacing = 905 mm and floor spacing = 5550 mm). The
FE model was constructed in Abaqus implicit. Quadratic 8-node shell elements with
quadrilateral shape were used for the plating and stiffeners with linear elastic material
behavior (E = 207 GPa, v = 0.3).Following a convergence study, the selected finite element
dimensions were taken equal to (75 × 75) mm2, that is, half the flange breadth. The
midsurface of the panel was modeled. All nodes of all degrees of freedom lying at the
boundary of the modeled geometry were set to zero, corresponding to a fully clamped
support condition. A uniformly distributed static pressure of magnitude 0.1 MPa was
applied over the plate (hydrostatic pressure). The loads, BCs and mesh of the bottom
stiffened panel are shown in Figure 5.
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Figure 5. Modeled geometry with boundary conditions (all degrees of freedom in the boundary, i.e., 
connection with floors and girders are constrained) and uniformly distributed pressure load (with 
direction upwards) (a) and corresponding mesh (b) for the bottom stiffened panel. 

Figures 6 and 7 present the distribution of the normal bending stress along the stiff-
eners’ direction that is produced as a consequence of the pressure load. It is evident that 
the stress field is almost periodic for the three stiffeners. The middle stiffener is considered 
the representative one, because it is not that affected by the imposed boundary conditions 
applied at the edges. Within the unsupported region between the stiffeners, tertiary (plate 
bending stress field) and secondary stresses are superimposed. Hence it is difficult to sep-
arate them. However, it is assumed that the axial bending stress developed at the flange 
is purely associated with the secondary stress field and unaffected by the tertiary stresses. 
According to statics, the bending moment developed at a fixed-fixed beam subjected to 
uniform line load is maximum at the supports (magnitude equal to qL2/12, where q stands 
for the line load and L stands for the beams span) and half of that moment is developed 
at the midspan (magnitude equal to qL2/24) but with opposite curvature (i.e., sign). This 
qualitative appreciation compares well with the corresponding FEA results as the normal 
stress at the midspan at the flange is approximately half that obtained in the vicinity of 
the supports. However, there does exist a stress concentration exactly at the supports that 
is attributed to the constraint itself, which pollutes the theoretical notion of the secondary 
stresses. To remove this boundary effect, the normal stress calculated at midspan, i.e., 33.4 
MPa for the bottom panel (see Figure 6) and 74.4 MPa for the topside wing tank panel (see 
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Figure 5. Modeled geometry with boundary conditions (all degrees of freedom in the boundary, i.e.,
connection with floors and girders are constrained) and uniformly distributed pressure load (with
direction upwards) (a) and corresponding mesh (b) for the bottom stiffened panel.

Figures 6 and 7 present the distribution of the normal bending stress along the stiff-
eners’ direction that is produced as a consequence of the pressure load. It is evident that
the stress field is almost periodic for the three stiffeners. The middle stiffener is considered
the representative one, because it is not that affected by the imposed boundary conditions
applied at the edges. Within the unsupported region between the stiffeners, tertiary (plate
bending stress field) and secondary stresses are superimposed. Hence it is difficult to
separate them. However, it is assumed that the axial bending stress developed at the flange
is purely associated with the secondary stress field and unaffected by the tertiary stresses.
According to statics, the bending moment developed at a fixed-fixed beam subjected to
uniform line load is maximum at the supports (magnitude equal to qL2/12, where q stands
for the line load and L stands for the beams span) and half of that moment is developed
at the midspan (magnitude equal to qL2/24) but with opposite curvature (i.e., sign). This
qualitative appreciation compares well with the corresponding FEA results as the normal
stress at the midspan at the flange is approximately half that obtained in the vicinity of the
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supports. However, there does exist a stress concentration exactly at the supports that is
attributed to the constraint itself, which pollutes the theoretical notion of the secondary
stresses. To remove this boundary effect, the normal stress calculated at midspan, i.e.,
33.4 MPa for the bottom panel (see Figure 6) and 74.4 MPa for the topside wing tank panel
(see Figure 7), were considered as the most accurate representations of the secondary stress
calculated through FEA. Therefore, the maximum secondary stress was taken as double
the aforementioned values, that is 66.8 MPa and 148.8 MPa for the bottom and top panel,
respectively. These levels were then compared with the corresponding results obtained by
employing Equation (5) for each alternative effective width (Paik, CSR, Schade and Miller
lower bound) and then employing Equation (1) to derive an analytical value.
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Figure 7. Longitudinal stress distribution (S22 in the model’s convention) over the topside wing 
tank stiffened panel:left, full model; right, section cut. 

Tables 2 and 3 list the percentage difference between the maximum secondary stress 
from FEA and the respective analytical stress value. It is evident that the difference varies 
within the range 6–13%, and consequently, one could say that this range is not statistically 
significant. It is surprising that although there is quite a difference in the calculated effec-
tive widths per employed method, this difference does not propagate to the maximum 
normal stress. The magnitude that controls the stress is the section modulus (Equation (5)) 
where be has an important role. However, as the effective width decreases, the neutral axis 
(NA) moves further away from the attached plating, and there is an interplay between the 
moment of inertia and the NA location. Eventually, the effective cross-section does not 
significantly vary with the alternative effective width magnitudes. For instance, for the 
bottom panel by assuming that the effective width is 35% of the spacing, the resulting 
stress differs by 6% based on the FEA result. If we consider that the effective width is 81% 
of the spacing, then the difference is ~12%, still not that significant. Though more cases 
(extensive parametric studies) should be examined to draw a concrete conclusion, it is 
evident that in practical design, all four approaches might effectively be used along with 
a calibrated factor of safety against computational uncertainties. 
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responds at the uniaxial E* and within parenthesis at the biaxial E*. 
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Figure 7. Longitudinal stress distribution (S22 in the model’s convention) over the topside wing tank
stiffened panel: left, full model; right, section cut.

Tables 2 and 3 list the percentage difference between the maximum secondary stress
from FEA and the respective analytical stress value. It is evident that the difference varies
within the range 6–13%, and consequently, one could say that this range is not statistically
significant. It is surprising that although there is quite a difference in the calculated effective
widths per employed method, this difference does not propagate to the maximum normal
stress. The magnitude that controls the stress is the section modulus (Equation (5)) where
be has an important role. However, as the effective width decreases, the neutral axis (NA)
moves further away from the attached plating, and there is an interplay between the
moment of inertia and the NA location. Eventually, the effective cross-section does not
significantly vary with the alternative effective width magnitudes. For instance, for the
bottom panel by assuming that the effective width is 35% of the spacing, the resulting stress
differs by 6% based on the FEA result. If we consider that the effective width is 81% of the
spacing, then the difference is ~12%, still not that significant. Though more cases (extensive
parametric studies) should be examined to draw a concrete conclusion, it is evident that
in practical design, all four approaches might effectively be used along with a calibrated
factor of safety against computational uncertainties.
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Table 2. Assessment of the effective width solution with respect to the FEA maximum normal stress
for the panel taken from the bottom area of the ship. In Miller’s solution the out of parenthesis
corresponds at the uniaxial E* and within parenthesis at the biaxial E*.

Header be/s % Difference from FEA

Paik 0.35 6.1
Schade 0.44 8.0

CSR 0.71 11.1
Miller * 0.96 (0.93) 12.3 (12.1)

* Lower Bound.

Table 3. Assessment of the effective width solution with respect to the FEA maximum normal stress
for the panel taken from the topside wing tank area of the ship. In Miller’s solution the out of
parenthesis corresponds at the uniaxial E* and within parenthesis at the biaxial E*.

Header be/s % Difference from FEA

Paik 0.49 10.6
Schade 0.59 11.5

CSR 0.86 13.1
Miller * (lower bound) 0.98 (0.97) 13.7 (13.4)

* Lower Bound.

3. Simplifying the Analysis of Cross-Stiffened Panels

This section has a special focus on the dimensioning process of cross-stiffened panels,
i.e., stiffening at both in-plane directions. In the shipbuilding industry, cross-stiffened
panels are found mainly in passenger and RORO vessels, among other class types. For
dimensioning purposes of the stiffeners and the plate, usual engineering practice involves
the application of numerical methods, which is time demanding. Our aim is to simplify
the geometry in order to successfully dimension the longitudinal stiffeners by solely con-
sidering the secondary stress field. Namely, the scope is to reduce the model’s geometry
to a one-dimensional problem, which will allow for the application of the classical beam
bending theory. However, the presented simplification approach only applies to cases
where the transverse stiffening is strong (e.g., deck in bulkers/tankers) related to the
longitudinal stiffening.

To calculate the stress field for a longitudinal stiffener based on a one-dimensional
analysis, we need to estimate the type of support that is imposed at the stiffener connections
due to the existence and cooperation of/with the transverse stiffening system. The proposed
concept involves determining the secondary normal bending stresses by introducing a
phenomenological stiffness coefficient, namely k, which implicitly models the rotational
rigidity of the transverse stiffeners. Figure 8 illustrates the concept. It must be clarified that
the stiffness coefficient k is not equivalent to the spring torsional constants (κ1, κ2) but is
associated with the produced load effect. A transverse stiffener of high rigidity produces
higher reactive moment when a relative rotation is exerted. The extreme case is when
rotational stiffness is at high levels and therefore rotation is not allowed at all. This case
leads at a fully clamped beam case subjected to a uniform line load, that produces the
bending effect M given by the following equation:

M =
qL2

k
(11)

where k takes the value of 12 at the ends, as already mentioned. On the other hand, if the
transverse stiffener has a quite weak torsional rigidity, then the ends of the one-dimensional
longitudinal stiffener model are free to rotate without any constraint. In this particular case,
the maximum bending moment develops at the midspan, and k takes the value of 8. The
bending stress formula is then given as:

σmax =
M
Z

=
q L2

k I
zmax (12)
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where I is the moment of inertia and Z is the section modulus of the effective cross-section
(with the attached plating) of the longitudinal stiffeners and zmax is the distance of the most
remote material fiber (flange). This study works on deriving a correlation between the
sectional property of the transverse stiffener and parameter k.
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3.1. Design of Experiment and Test Matrix

To achieve reliable results, we needed to run the model for a range of parameters.
The choice of the values of the parameters, were determined from the Central Composite
Design (CCD), that is a design space exploration technique that sources from Design of
Experiments (DoE).

Central composite design was appropriate for calibrating full quadratic models. It
consisted of a full factorial design with a central point and additional axial points at a
specific distance from its center. For our model, the faced design was used. The range of
the values of the variables were determined from the range of the values that were used
in actual ship scantlings. The variables of the model were the transverse stiffener spacing,
st, the longitudinal stiffener spacing, s, the plate thickness, tp, and the second moment of
inertia of the longitudinal profile, Is.

Considering that n represents the number of variables, the total number of design
points was equal to 2n + 2n + 1 which was equal to 25 for n = 4. The range of the values for
the variable st was selected from 1800 to 5400 mm, for the variable s from 600 to 900 mm
and for the variable tp from 12 to 28 mm. For the variable Is the “Tee” profiles were
the following: (200 × 10 + 50 × 10), (280 × 14 + 90 × 14) and (340 × 15 + 110 × 15).
Consequently, the test matrix of these four variables is listed in Table 4.

Table 4. The test matrix of the variables of the model.

st (mm) s (mm) tp (mm) Is (mm ×mm)

1800 600 12 200 × 10 + 50 × 10
1800 600 12 340 × 15 + 110 × 15
1800 600 28 200 × 10 + 50 × 10
1800 600 28 340 × 15 + 110 × 15
5400 600 12 200 × 10 + 50 × 10
5400 600 12 340 × 15 + 110 × 15
5400 600 28 200 × 10 + 50 × 10
5400 600 28 340 × 15 + 110 × 15
1800 900 12 200 × 10 + 50 × 10
1800 900 12 340 × 15 + 110 × 15
1800 900 28 200 × 10 + 50 × 10
1800 900 28 340 × 15 + 110 × 15
5400 900 12 200 × 10 + 50 × 10
5400 900 12 340 × 15 + 110 × 15
5400 900 28 200 × 10 + 50 × 10
5400 900 28 340 × 15 + 110 × 15
3600 600 20 280 × 14 + 90 × 14
3600 900 20 280 × 14 + 90 × 14
1800 750 20 280 × 14 + 90 × 14
5400 750 20 280 × 14 + 90 × 14
3600 750 12 280 × 14 + 90 × 14
3600 750 28 280 × 14 + 90 × 14
3600 750 20 200 × 10 + 50 × 10
3600 750 20 340 × 15 + 110 × 15
3600 750 20 280 × 14 + 90 × 14
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In order to examine the effect of the transverse stiffeners on the secondary stress field,
for each of the above 25 cases, the coefficient k was calculated for five different cross-sections
of transverse stiffeners. Table 5 presents the selected stiffener combinations used in setting
up the numerical experimentalprogram.

Table 5. Longitudinal and transverse stiffener combinations considered.

Longitudinal
Stiffener

200 × 10 + 50 × 10

Longitudinal
Stiffener

280 × 14 + 90 × 10

Longitudinal
Stiffener

340 × 15 + 110 × 15

Transverse stiffeners

200 × 10 + 50 × 10 280 × 14 + 90 × 14 340 × 15 + 110 × 15
270 × 13 + 85 × 13 320 × 15 + 105 × 15 360 × 16 + 120 × 16

330 × 15 + 110 × 15 360 × 16 + 120 × 16 380 × 17 + 130 × 17
375 × 16 + 130 × 16 390 × 17 + 140 × 17 400 × 17 + 140 × 17
425 × 18 + 150 × 18 425 × 18 + 150 × 18 425 × 18 + 150 × 18

The dimensions of the transverse stiffeners were chosen considering that the second
moment of inertia of longitudinal stiffeners is smaller than the second moment of inertia
of transverse stiffeners, as usually found in ships. Moreover, for each case, all structural
elements comply with the rule-based slenderness and proportion requirements.

3.2. Finite Element Modeling

For each discrete case, a corresponding FE model was developed with a given geom-
etry extent. To avoid any model and constraint-based numerical errors, a cross-stiffened
panel consisting of four transverse stiffeners with spacing equal to st and three longitudinal
stiffeners with spacing equal to s was used. We were interested in the middle longitudinal
stiffener located between the two central transverse stiffeners. Typically, girders and floors
are found on the boundaries of cross-stiffened panels. As such, the boundary of the mod-
eled geometry was considered as fully clamped, i.e., all DoFs of all boundary nodes was
constrained. A uniform pressure with magnitude equal to 0.1 MPa was applied. Figure 9a
shows the geometry and applied loads and BCs. A steel material with linear elastic behavior
(E = 207 GPa and v = 0.3) was considered. The plate was modeled with linear 4-node shell
elements and the stiffeners with 2-node beam elements. A structured mesh consisting of
(50 × 50) mm2 quadrilaterals and line elements was eventually constructed per case, as
indicatively shown in Figure 9b.
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Figure 9. Modeled geometry, boundary conditions (all degrees of freedom in the boundary, i.e., 
connection with transverse beams) and uniformly distributed pressure load (with direction up-
wards) (a) and corresponding mesh for the cross-stiffened panel (b). The stiffeners’ cross-sections 
are presented for rendering purposes.Figure 10 presents the normal bending stress along each stiff-
ener direction for two different modeled cases. It is evident that the mid-stiffener attained a sym-
metric stress field along its span (between two neighboring transverse stiffeners). The effect of the 
model extent (number of longitudinal and transverse stiffeners) and peripheral supports do not in-
fluence the target stiffener considered for post-calculations. 
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Figure 9. Modeled geometry, boundary conditions (all degrees of freedom in the boundary, i.e.,
connection with transverse beams) and uniformly distributed pressure load (with direction upwards)
(a) and corresponding mesh for the cross-stiffened panel (b). The stiffeners’ cross-sections are
presented for rendering purposes.

Figure 10 presents the normal bending stress along each stiffener direction for two
different modeled cases. It is evident that the mid-stiffener attained a symmetric stress field
along its span (between two neighboring transverse stiffeners). The effect of the model
extent (number of longitudinal and transverse stiffeners) and peripheral supports do not
influence the target stiffener considered for post-calculations.
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Figure 10. Stiffener bending normal stresses and deformation of a weak (a) and strong (b) stiffener 
system. 

3.3. Assessment of the Results 
Following the respective finite element simulation for each case defined above, the 

maximum normal stress along the mid longitudinal stiffener, was retrieved and substi-
tuted in the following equation which sources from Equation (12) 
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All obtained stiffness values k were plotted as a function of the corresponding second 
moment of inertia of the transverse stiffeners, as given in Table 4, in Figure 11. Most data 
are concentrated around k = 12 as the sample’s mean is 12.79 and the standard deviation 
is 1.99. As expected, none of the resultant k has a value smaller than 8 that corresponds to 
the case of a simply supported beam. It is noted that the theoretical values of k for simply 
and fixed supports are depicted with continuous lines. 

Figure 10. Stiffener bending normal stresses and deformation of a weak (a) and strong (b) stiff-
ener system.

3.3. Assessment of the Results

Following the respective finite element simulation for each case defined above, the
maximum normal stress along the mid longitudinal stiffener, was retrieved and substituted
in the following equation which sources from Equation (12)

k =
0.1 s s2

t
Z

(13)

All obtained stiffness values k were plotted as a function of the corresponding second
moment of inertia of the transverse stiffeners, as given in Table 4, in Figure 11. Most data
are concentrated around k = 12 as the sample’s mean is 12.79 and the standard deviation is
1.99. As expected, none of the resultant k has a value smaller than 8 that corresponds to the
case of a simply supported beam. It is noted that the theoretical values of k for simply and
fixed supports are depicted with continuous lines.

It is of interest to aggregate all data and build a histogram in order to perform de-
scriptive statistics. Figure 12 presents the obtained statistical evaluations. It seems that the
probability distribution of k can be approximated by the t location-scale probability density
function (pdf) which has the following functional form:
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fk(k) =
Γ
(

ν+1
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ν +

(
k−µ

σ

)2

ν


−(ν+1)/2

(14)

where µ is the location parameter and is equal to 12.16, σ is the scale parameter and is
equal to 0.77, ν is the shape parameter and is equal to 1.36 and Γ(·) is the gamma function
given by:

Γ(k) =
∞∫

0

e−ttk−1dt (15)
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Figure 12. Histogram of the k stiffness data and t location-scale distribution. 

The derived pdf may of course be used for assigning probabilities of occurrence to 
different values of k. For example, the corresponding probability that k receives values 
smaller than 8.0 is equal to 2.6%. 

The effect of the second moment of inertia of transverse stiffeners to the value of k 
may be considered insignificant based on the general trend presented in the boxplot of 
Figure 13. For this reason, in Table 6, the coefficient k is given in relation with s, st, and I. 
For these three variables, within the limits that were mentioned before, coefficient k can 
be calculated using trilinear interpolation. This table may be used within the scantling 
process of cross-stiffened panels found in ship structures. 

Table 6.The coefficient k in relation with st, s and I. 

st (mm) s (mm) I (𝟏𝟎𝟕 𝐦𝐦𝟒) K(-) 
1800 600 4.11 12.34 
1800 600 25.62 12.92 
1800 600 5.18 13.73 
1800 600 33.85 14.5 

Figure 12. Histogram of the k stiffness data and t location-scale distribution.

The derived pdf may of course be used for assigning probabilities of occurrence to
different values of k. For example, the corresponding probability that k receives values
smaller than 8.0 is equal to 2.6%.
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The effect of the second moment of inertia of transverse stiffeners to the value of k
may be considered insignificant based on the general trend presented in the boxplot of
Figure 13. For this reason, in Table 6, the coefficient k is given in relation with s, st, and I.
For these three variables, within the limits that were mentioned before, coefficient k can be
calculated using trilinear interpolation. This table may be used within the scantling process
of cross-stiffened panels found in ship structures.
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Table 6. The coefficient k in relation with st, s and I.

st (mm) s (mm) I (107 mm4) K (-)

1800 600 4.11 12.34
1800 600 25.62 12.92
1800 600 5.18 13.73
1800 600 33.85 14.5
5400 600 4.1 11.78
5400 600 25.62 8.82
5400 600 5.18 17.84
5400 600 33.85 12.77
1800 900 4.39 12.29
1800 900 28.85 9.11
1800 900 5.42 14.65
1800 900 36.54 9.93
5400 900 4.39 11.67
5400 900 28.85 11.37
5400 900 5.42 13.49
5400 900 36.54 11.89
3600 600 17.15 11.91
3600 900 18.56 11.88
1800 750 17.96 13.63
5400 750 17.96 11.78
3600 750 15.49 11.44
3600 750 19.72 12.24
3600 750 4.84 12.21
3600 750 32.12 11.73
3600 750 17.96 11.84
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4. Conclusions

This study has worked toward two main objectives related to the secondary stresses
developed in stiffened panels found in ship hull structures.

The first objective was to assess the effect of four different approaches used for incorpo-
rating the shear lag mechanism into the notion of the effective width for the case of one-way
(single-bay) stiffened panels subjected to a uniform pressure load. Paik’s solution yields the
minimum effective width of the attached plating, whereas Miller’s solution yields the max-
imum corresponding magnitude. Nevertheless, we have generated evidence based on FEA
that the effect of either approach to the secondary stress field is statistically insignificant.

The second objective was to simplify the analysis of slender stiffeners of a cross-
stiffened panel subjected to a uniform pressure as well as to reduce the problem to a single
beam bending one and figure out the stiffness of the transverse stiffeners. As a general
conclusion, this work has generated evidence that supports that a fully fixed condition
(relative rotation not allowed) of the stiffener ends may be applied. A table that relates
longitudinal and transverse spacing and moment of inertia with the corresponding k values
is provided.

Although the presented research is concentrated at statically loaded stiffened panels,
the methods could be used in time-dependent dynamic analysis and for inelastic buckling
analysis and is an area that deserves exploring in future work.
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Abbreviations

σ1,σx normal bending stress
σmax maximum normal bending stress
Mhg hull-girder bending moment
Ihg hull-girder moment of inertia
z distance of material fibers from neutral axis
tp plate thickness
αp correction factor for the panel aspect ratio (αp = 1.2 − s/(2.1 st))
P applied pressure
χ coefficient for plate scantling
Ca permissible bending stress coefficient
REh permissible material resistance
Zmin minimum section modulus requirement
s longitudinal stiffener spacing
lbdg effective bending span
f bdg coefficient based on effective bending span
Cs coefficient
be plate’s effective width (breadth)
Zact actual section modulus
q(x,S) shear flow
Q first moment of inertia
I second moment of inertia
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V shear force
τ(x,s) shear stress
γ(x,s) shear strain
G shear modulus
E* Effective Young’s modulus (taken as E or E/(1 − ν2))
ν Poisson’s ratio
e(s) axial deformation
L length of stiffened plate
f k (k) propability distribution
Γ(·) gamma function
µ location parameter
σ scale parameter
ν shape parameter

Appendix A

The appendix provides more details on Miller’s solution. Classical rules of mechanics
are employed. The following step-by-step procedure undertaken in this work to derive
the corresponding effective breadth. The formulation initiates with the calculation of the
load effects, i.e., distribution of the bending moment and shear force along the length of
the stiffener with the attached plating modeled by a beam, M(x) and V(x), respectively. The
next step is to derive the shear flow at each section x, as q(x,s) based on the vertical shearing
force; a task that is straightforward either for open or for closed cross-sectional profiles.
The variable s is the local dimension that follows the predefined path ABCD shown in
Figure A1. By calculating the first moment of inertia Q(s) per section element and the
section’s second moment of inertia I, then q(x,s) is given as:

q(x, s) =
Q(s)V(x)

I
(A1)
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Figure A1. Integration path for shear lag effect calculation.

The field of in-plane shear stresses, τ(x,s), can be calculated by dividing the shear flow
over the thickness for each element of the cross-section, tel.(flange, web, attached plate):

τ(x, s) =
q(x, s)

tel.
(A2)

The aforementioned shear stress field produces a corresponding in-plane shear strain
γ(x,s), with a corresponding linear relation described by Hooke’s law:

γ(x, s) = G τ(x, s) (A3)
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where G is the shear modulus:
G =

E
2(1 + v)

(A4)

Equation (A3) denotes that shearing stresses produce a shearing deformation, which
produces changes in right angles of infinitesimal planar elements dxds, as illustrated in
Figure A2. These changes in the angles introduce changes in the length of material fibers
as well, denoted as e, if not allowed to deform freely. In thin-walled composite sections
under lateral loads, such deformation is constrained due to the relative stiffness of the
involved elements. Hence axial deformations are of substantial importance and cannot be
neglected. This is in fact the underlying mechanism of the shear lag problem that associates
the shearing effect with the bending effect. On this foundation it is important to introduce
a corresponding relation between kinematics as:

γ(s) =
∂e
∂s

(A5)
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Equation (A5) is written for a given section x. By integrating over s, we can extract a 
relation for the axial deformation effect of shearing as: 

( )( ) d
s

e s s sγ=   (A6)

By using Equation (A3), then Equation (A6) may be rewritten: 

( )1( ) d
s

e s s s
G

τ=   (A7)

By differentiating Equation (A7) with respect to x, the axial strain due to shear lag 
effect, εshearlag, is introduced: 

shear lag ( , ) es x
x

ε ∂=
∂  (A8)
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*
shear lag ( , ) es x E

x
σ ∂=

∂  (A9)

where E* is either the uniaxial Young’s modulus, E, or the biaxial effective one, E/(1-v2). 
Miller’s solution neglects the biaxial condition and considers only the 1D stress sate. For 
reasons of comprehensiveness, we have examined both approaches. By differentiating 
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( )
*

shear lag ( , ) d
s

Es x s s
G x

σ τ
 ∂=  ∂  
  (A10)
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V x Q sEs x s
G x I t

σ
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Equation (A5) is written for a given section x. By integrating over s, we can extract a
relation for the axial deformation effect of shearing as:

e(s) =
∫
s

γ(s)ds (A6)

By using Equation (A3), then Equation (A6) may be rewritten:

e(s) =
1
G

∫
s

τ(s)ds (A7)

By differentiating Equation (A7) with respect to x, the axial strain due to shear lag
effect, εshearlag, is introduced:

εshear lag(s, x) =
∂e
∂x

(A8)
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The corresponding axial stress, shearlag, may be given by Hooke’s law as:

σshear lag(s, x) = E∗
∂e
∂x

(A9)

where E* is either the uniaxial Young’s modulus, E, or the biaxial effective one, E/(1−v2).
Miller’s solution neglects the biaxial condition and considers only the 1D stress sate. For
reasons of comprehensiveness, we have examined both approaches. By differentiating
Equation (A7) with respect to x, Equation (A9) is rewritten as:

σshear lag(s, x) =
E∗

G
∂

∂x

∫
s

τ(s)ds

 (A10)

Substituting Equation (6) into Equation (A10), the following equation is generated:

σshear lag(s, x) =
E∗

G
∂V(x)

∂x

∫
s

Q(s)
I tel.

ds

 (A11)

By using Equation (A4), by assuming that the cross-section does not vary along the
length and that from static equilibrium w(x) = ∂V/∂x then Equation (A11) is rewritten as:

σshear lag(s, x) =
E∗ w(x)

G I

∫
s

Q(s)
I tel.

ds

 (A12)

The preceding Equations (A11) and (A12) provide the key magnitudes for eventually
deriving the effective breadth per case.

References
1. Common Structural Rules (CSR). International Association of Classification Societies; Common Structural Rules: London, UK, 2021.
2. Evans, H.R.; Kristek, V. A hand calculation of the shear lag effect in stiffened flange plates. J. Constr. Steel Res. 1984, 4, 117–134.

[CrossRef]
3. He, X.; Xiang, Y.; Chen, Z. Improved method for shear lag analysis of thin-walled box girders considering axial equilibrium and

shear deformation. Thin-Walled Struct. 2020, 151, 106732. [CrossRef]
4. Hughes, O.F.; Paik, J.K. Ship Structural Analysis and Design; The Society of Naval Architects and Marine Engineers: Alexandria,

VA, USA, 2013.
5. Jensen, S.S. On the shear coefficient in Timoshenko’s beam theory. J. Sound Vib. 1983, 87, 621–635. [CrossRef]
6. Jiang, L.; Zhang, S.M. Effect of pressure on collapse behaviour of stiffened panel. In Development in Maritime Technology and

Engineering; Guedes Soares & Santos: Lisbon, Portugal, 2021.
7. Koo, K.K.; Wu, X.S. Shear lag analysis for thin-walled members by displacement method. Thin-Walled Struct. 1992, 13, 337–354.

[CrossRef]
8. Lee, C.K.; Wu, G.J. Shear lag analysis by the adaptive finite element method: 1. Analysis of simple plated structures. Thin-Walled

Struct. 2000, 38, 285–309. [CrossRef]
9. Li, S.; Benson, S.; Dow, R.S. A Timoshenko beam finite element formulation for thin-walled box girder considering inelastic

buckling. Developments in the Analysis and Design of Marine Structures. In Proceedings of the 8th International Conference on
Marine Structures (MARSTRUCT), Trondheim, Norway, 7–9 June 2021.

10. Li, X.; Wan, S.; Zhang, Y.; Zhou, M.; Mo, Y. Beam finite element for thin-walled box girders considering shear lag and shear
deformation effects. Eng. Struct. 2021, 233, 111867. [CrossRef]

11. Miller, N.S. Shear Lag in Box Girders; Department of Naval Architecture and Ocean Engineering, University of Glasgow: Glasgow,
UK, 1976.

12. Paik, J.K. Ultimate Limit State Analysis and Design of Plated Structures, 2nd ed.; John Wiley & Sons Ltd.: London, UK, 2018.
13. Prokic, A. New finite element for analysis of shear lag. Comput. Struct. 2002, 80, 1011–1024. [CrossRef]
14. Schade, H.A. The effective breadth of stiffened plating under bending loads. Trans. SNAME 1951, 59, 403–420.
15. Tahan, N.; Pavlovic, M.N.; Kotsovos, M.D. Shear-lag revisited: The use of single fourier series for determining the effective

breadth in plated structures. Comput. Struct. 1997, 63, 759–767. [CrossRef]
16. Tenchev, R.T. Shear lag in orthotropic beam flanges and plates with stiffeners. Int. J. Solids Struct. 1996, 33, 1317–1334. [CrossRef]

http://doi.org/10.1016/0143-974X(84)90022-1
http://doi.org/10.1016/j.tws.2020.106732
http://doi.org/10.1016/0022-460X(83)90511-4
http://doi.org/10.1016/0263-8231(92)90028-U
http://doi.org/10.1016/S0263-8231(00)00043-4
http://doi.org/10.1016/j.engstruct.2021.111867
http://doi.org/10.1016/S0045-7949(02)00036-6
http://doi.org/10.1016/S0045-7949(96)00065-X
http://doi.org/10.1016/0020-7683(95)00093-3


Appl. Mech. 2022, 3 143

17. Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity; McGraw Hill: New York, NY, USA, 1951.
18. Vedeler, G. DNV Rules (January 2013), Pt 3, Ch 1, Sec 3, C402. Available online: https://rules.dnv.com/docs/pdf/dnvpm/

rulesship/2013-01/ts301.pdf (accessed on 6 January 2022).

https://rules.dnv.com/docs/pdf/dnvpm/rulesship/2013-01/ts301.pdf
https://rules.dnv.com/docs/pdf/dnvpm/rulesship/2013-01/ts301.pdf

	Introduction 
	One-Way (Single-Bay) Stiffened Panel 
	Analytical Solution of Miller 
	Alternative Analytical Solutions 
	Assessment of Analytical Solutions 
	Assessment of the Analytical Solutions 

	Simplifying the Analysis of Cross-Stiffened Panels 
	Design of Experiment and Test Matrix 
	Finite Element Modeling 
	Assessment of the Results 

	Conclusions 
	Appendix A
	References

