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Abstract: Traditional neuromuscular tests (e.g., jumping and sprinting tasks) are useful to assess
athletic performance, but the basic outcomes (e.g., jump height, sprint time) offer only a limited
amount of information, warranting a more detailed approach to performance testing. With a more
analytical approach and biomechanical testing, neuromuscular function can be assessed in-depth. In
this article, we review the utility of selected biomechanical variables (eccentric utilization ratio, force–
velocity relationship, reactive strength index, and bilateral deficit) for monitoring sport performance
and training optimization. These variables still represent a macroscopic level of analysis, but provide
a more detailed insight into an individual’s neuromuscular capabilities, which can be overlooked
in conventional testing. Although the aforementioned “alternative” variables are more complex in
biomechanical terms, they are relatively simple to examine, with no need for additional technology
other than what is already necessary for performing the conventional tests (for example, even
smartphones can be used in many cases). In this review, we conclude that, with the exception
of the eccentric utilization ratio, all of the selected variables have some potential for evaluating
sport performance.

Keywords: bilateral deficit; eccentric utilization ratio; force–velocity relationship; reactive strength index

1. Introduction

With the fast development of sport science, sport diagnostics is becoming indispens-
able component of competitive sport for injury prevention performance enhancement
and training optimization. Evaluation of athletic performance provides coaches and ath-
letes with information and feedback about an individual’s neuromuscular function, which
enables insight into the athlete’s weaknesses and strengths, based on which individual
training plan can be individually tailored. In addition, by repeating diagnostic tests on a
regular basis, we can gain insight about the effectiveness of the current training program
and decide about further training adjustments. In the strength and conditioning field,
strength and power are the most commonly tested neuromuscular capabilities, owing to
their significant impact on sport performance [1,2], as well as on injury prevention [3,4].
Maximal strength is evaluated with maximal voluntary contractions (MVC), performed in
static/isometric [5,6] or dynamic/isokinetic conditions [7,8], and are widely used for the
determination of returning to sport after an injury [9]. While the dynamometers are usually
part of laboratory-based testing, strength can be also evaluated through field-based tests,
such as repetition maximum testing (RM), that involve the athlete lifting as much weight
as possible for one or more repetitions in different movement tasks (i.e., squat, deadlift,
bench press). RM testing has been an important component in strength and condition-
ing practice for evaluating the strength capacity and tailoring individually based weight
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training [10]. Moreover, velocity-based methods can be used to estimate maximal strength,
without the need to perform repetitions to failure. Based on the velocity of the submaximal
weighted specific movement (e.g., squat, bench press, etc.), 1RM can be predicted [11].
Using the velocity-based method for evaluating maximal strength seems to be safer and
more time-efficient than traditional RM testing.

In addition to maximal strength, explosive strength and power are important aspects
of neuromuscular function for successful sport performance [1], and are usually tested
through sport-specific movements, such as sprints, jumps, and throws. Vertical jump
assesses the anaerobic power of the lower extremities, and is thus frequently used for
sports training [12] and to monitor athletes’ neuromuscular performance [13]. The gold
standard to evaluate jumping power includes different forms of jumps performed on a
force plate [14–16]. Studies report that vertical jumping performance is associated with
many movement tasks, such as change in direction (CoD) ability [17,18] and linear sprinting
performance [19,20]. Furthermore, jumping tests are also useful for detecting inter-limb
asymmetry, which is reported as an important risk factor for injuries and can negatively
affect athletic performance [21–23]. Sprints are often used in sport performance testing
protocol for assessing the acceleration ability [24,25] and maximal velocity [26]. The
literature suggests that the ability to generate large magnitudes of ground reaction force in
the horizontal direction is an important component of acceleration performance [27]. While
success within sprinting events relies heavily on both the ability to accelerate rapidly and
through achieving and maintaining high running velocities [28], studies are also reporting
the importance of horizontal force development for CoD performance [29] and sport-
specific jumping ability [30]. Based on these observations, sprints over 10–30 m are usually
performed for testing and training purposes. Furthermore, for team sport athletes, CoD
ability has also been extensively evaluated. There are many different tests to evaluate CoD
ability; a recently adopted method in the literature is called CoD deficit, which is suggested
to provide a more isolated measure of CoD performance [31]. In brief, the CoD deficit
represents the additional time that an athlete requires to complete a CoD task compared to
a linear acceleration of the equal distance.

The aforementioned tests (jumps, sprints, 1RM tests, and CoD tests) present useful
methods to assess athletic performance, but the basic outcomes (e.g., jump height, peak
power, sprint time, 1RM), offer only a limited amount of information, thus warranting
a more detailed approach to performance testing. With a more analytical approach and
biomechanical testing, neuromuscular function can be assessed in-depth. Such approaches
provide more detailed insight into an athlete’s neuromuscular capacity and could offer
the opportunity for training optimization. An example could be the aforementioned
CoD deficit, which enables us to evaluate a more isolated measure of CoD performance,
independent of acceleration ability and maximal velocity component (73). Based on the
acquired information, the training can be adjusted towards acceleration ability or CoD
technique, depending on what the individual is lacking. Previous research has identified
several biomechanical variables that could be used in alternative biomechanical testing,
such as the reactive strength index (RSI), variables from the force–velocity relationship (FV)
in different movement tasks, the eccentric utilization ratio (EUR), and bilateral deficit (BLD).
In those selected variables, we systematically change some subcomponents (e.g., load in
FV relationship; inclusion of eccentric part in EUR; unilateral performance compared to
bilateral performance in BLD; drop height in RSI) of selected movements that are very
similar to each other. This allows for an analysis that is still at the macroscopic behavior
level, but could provide more detailed insight into an individual’s neuromuscular function
and physical status, which can be overlooked in conventional testing.

Although the aforementioned “alternative” variables are more complex in biome-
chanical terms, they are mostly relatively simple to analyze, with no need for additional
technology beyond what is already necessary for performing the conventional tests. De-
spite the selected variables being widely described in scientific literature, to our knowledge,
there is no review that synthesizes their relevance to sport performance and training op-
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timization to help coaches select sport diagnostics tools that would be sensible for more
detailed training adjustments. The aim of this review is to cover some of the biomechanical
variables that are frequently mentioned/justified in scientific literature but are still not
commonly used in practice. Based on that, we examine the associations between selected
biomechanical variables and sport performance and its usefulness for training-related
decision making for improving performance.

2. Eccentric Utilization Ratio

The most commonly used method for assessing the explosive power of lower limbs are
different types of jumps [32]. Two of the most frequently used vertical jumps for assessment
purposes are the squat jump (SJ) and the countermovement jump (CMJ) [12]. On average,
the height of the CMJ is 5–15% higher than CMJ [33]. This ratio between the jumps has
been termed as “eccentric utilization ratio” (EUR) (i.e., CMJ height divided by SJ height),
and has been often purported to serve as an indicator of performance [34]. It should be
also mentioned that a few different calculations to express CMJ and SJ difference have been
suggested in the literature. In addition to EUR, authors have suggested calculations of reac-
tive strength (CMJ-SJ) and the percent pre-stretch augmentation ((CMJ-SJ)/SJ) × 100) [35],
although very similar information is provided in all cases.

Traditionally, it was believed that the difference between SJ and CMJ is largely deter-
mined by the capability to store the elastic energy during the braking phase of the CMJ
and use it during the propulsive phase. Thus, higher values were though to reflect better
efficiency in elastic energy storage [36]. However, later studies have shown that higher
forces are developed in CMJ compared to SJ due to the active eccentric portion of the jump
prior to the propulsive phase, which enables greater overall power output in CMJ [37,38].
In addition to difference in kinematics between CMJ and SJ (e.g., different lean of the trunk),
squat depth is difficult to control accurately, with athletes commonly performing a greater
squat depth during the CMJ, which provides additional time for the production of force,
resulting in a greater impulse and greater duration for acceleration. Based on that, higher
EUR is explained by the better ability to develop high forces in downward phase of the CMJ.
It has been suggested that larger EUR can be a consequence of superior CMJ performance,
but also lower SJ performance, which could be related to the poor ability to develop force
rapidly [37,39] and high levels of muscle slack [40]. Indeed, novel studies show that high
values of EUR may not be beneficial at all [33,41].

Since a lower rate of force development and higher muscle slack are associated with
poorer jumping performance [40], EUR might not be a valid indicator of performance. It
has been reported that EUR was larger in track and field athletes compared to gymnasts
and parkour practitioners, while the opposite was observed for jumping ability (SJ and
CMJ) [42]. Moreover, a recent study conducted on a large sample of different groups of
athletes (nine groups, n = 770) reported that the physical education students exhibited
the highest EUR, while track and field athletes, who showed the best overall jumping
ability, exhibited the lowest EURs among the tested groups [41]. Similar results are also
reported in interventional studies [43,44]. Furthermore, Gehri et al. [43] reported increased
jumping ability with no statistically significant changes in EUR after 12 weeks of plyometric
training. Similar findings are also reported by Hawkins et al. [44] after weightlifting and
plyometric training. On the other hand, Mcguigan et al. [34] reported that EUR could be
sensitive to training, although they did not investigate the direct relationship with athletic
performance. One of our recent studies found that the correlations between EUR and
performance measures were smaller (r = 0.31–0.34) than correlations with SJ and CMJ
variables alone (r = 0.33–0.70) [45].

The evidence suggests limited utility of the EUR in sport settings. Based on the
literature, EUR should not be interpreted as good or bad in isolation. The relevance of EUR
should be determined in the context of the specific sport; thus, general recommendations for
training decisions cannot be given based on the value of the EUR. For a better understanding
of the usefulness of this variable, future interventional training studies should monitor
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EUR and possibly include baseline EUR as a covariate in the analysis to reveal if there is
any utility in this metric at all. From a practical standpoint, the current evidence implies
that coaches should probably not use EUR for decision making regarding training design.
Moreover, it should be noted that the reliability of EUR is lower compared to isolated SJ
and CMJ metrics [46], at least in untrained participants.

3. Reactive Strength Index

Reactive strength is the ability to rapidly and efficiently perform an eccentric–concentric
muscle contraction within a stretch shortening cycle (SSC) movement [47]. The SSC is
present during many sporting activities (i.e., sprinting, jumping, etc.) [48] that depend
to a great extent on the ability to develop maximal force in a minimal bout of time [49].
Previous research has defined a variable called RSI, that is a very convenient approach to
assess the reactive strength ability [50]. The RSI is obtained from the drop jump (DJ) and
presents a measure of produced force and the time to develop this force, which is calculated
as the ratio between DJ height and ground contact time [50,51]. Based on the literature,
the RSI values of young athletes are around 1.1–1.5 ± 0.5 [51,52]. Moreover, recent studies
also implied a modified version of RSI (RSImod), which is obtained from CMJ metrics, and
may provide an alternative method for assessing RSI during several different plyometric
exercises [53]. In the RSImod calculation, ground contact time from DJ is replaced with the
time to takeoff in CMJ. The values of RSImod are typically lower than RSI values, ranging
from around 0.28 to 0.41 ± 0.08 m/s in collegiate athletes [54].

The rationale for different RSI metrics is that they may specifically target different types
of SSC. In brief, SSC is divided into two different types, fast SSC (contact time < 250 ms) [55]
and slow SSC, wherein the times of descent and transition to ascent are much longer [56].
DJ is performed with the use of fast SSC, while slow SSC is present in exercises such as
CMJ [51]. However, it should also be mentioned that there are some additional differences
in jump characteristics between DJ and CMJ. In DJ, ankle strength and stiffness are the
main determinants of performance [57], whereas a higher contribution of the knee joints is
typical for CMJ [58]. Similar to RSI [59], the RSImod is considered a reliable measure and
was reported to discriminate between different groups of athletes [54,60].

A recent systematic review with meta-analysis showed moderate associations between
RSI and physical performance (isomeric strength, isotonic strength, and endurance perfor-
mance) and moderate to large associations with performance measures (CoD, linear sprint,
acceleration ability, top speed ability) [61]. Furthermore, a recent study conducted on
university team sport athletes reported that subjects with greater RSI from DJ demonstrated
superior horizontal deceleration ability [62], which could be meaningful information for
improving CoD ability. However, more studies are needed to confirm this hypothesis. Bru-
mitt et al. [63] also reported the RSI could present an important component for preseason
screening for female volleyball athletes. Namely, they found that the players with lower
values of RSI (<0.91; 30.5 cm box) were four times more likely to be injured, while this was
not true for male basketball players.

A modality commonly used to enhance SSC capabilities is plyometric training. The
key characteristics of plyometric training are quick, powerful movements using a pre-
stretch or countermovement that involves SSC [64]. The literature reports that RSI may
be a potentially useful tool for designing individually tailored plyometric training [51,52].
To prescribe plyometric training, the optimal drop height for DJs is suggested to be based
on the highest RSI values [65]. The study by Ramirez-Campillo et al. [52] confirmed
this hypothesis on sample of young football players. In the study, the group of athletes
who performed DJ training using the heights that were associated with the largest RSI
exhibited greater performance benefits than the group of athletes performing DJs at the
fixed height. Additionally, studies suggest that RSImod in bilateral CMJ can be used as a
measure of explosiveness in volleyball players [66] and could be used to determine the need
of incorporating ballistic-type exercises (i.e., plyometric exercises, weightlifting movements)
into an athlete’s training program [60]. Moreover, a study on collegiate basketball players
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reported that measuring RSI before and after the last practice before the game day can
predict speed performance during the basketball match [67]. Authors reported that the
athletes with greater post-practice increases in RSI achieved greater peak speeds in a
basketball match the following day. Based on those results, exposing the basketball athletes
to stimuli that promote the production of maximal force outputs in reduced contact times
may be an important part of physical preparation close to competition. Based on the
reviewed literature, RSI could be a useful method for preseason testing to detect female
athletes with higher injury risk and for in-season testing to measure explosiveness and
readiness for the match.

Based on the literature, RSI may be a potentially useful tool for designing individually
tailored plyometric training, with the recommendation being to perform DJ from the height
associated with the highest RSI values. It can be suggested that plyometric training is
performed twice a week for 7 weeks, with the final (seventh) week being a tapering week,
as suggested by Ramirez-Campillo et al. [52]. For the new training cycle, the optimal drop
height should be re-tested. Furthermore, when planning the training process, we should
not forget about the principle of progression. For example, in the aforementioned study,
football players progressed from 48 jumps during each session in the first week to 90 jumps
per session in the sixth week, with a taper during the seventh week (i.e., same volume as in
the first week). This could present a basic scheme for planning plyometric training, from
which the training process can be further proceeded and adjusted to the needs of a specific
sport or athlete.

4. Bilateral Deficit

The term BLD describes the observation that the muscle force produced during maxi-
mal bilateral actions is lower than the sum of forces of the left and right limb generated
during unilateral contractions [68,69]. BLD is presented as a negative value of bilateral
index (BI), while positive values of BI are termed bilateral facilitation (BLF). In this case,
the force produced in the bilateral contractions is greater than the sum of forces during
unilateral contractions [68]. There is great variability in the literature regarding the value
of BI, with several underlying factors suggested (e.g., movement type, body segments
involved, muscle contraction type, participants’ characteristics) [69]. It appears that BLD is
a more consistent phenomenon in dynamic contractions, with the magnitude being greater
in lower body movements compared to upper body movements. Available evidence also
suggests that the magnitude of BLD increases with the velocity of contraction [69]. Re-
garding dynamic contractions, the average BI reported in the review by Škarabot et al. [69]
is −11.7 ± 9.7%, while the average value of BI in isometric contractions is −8.6 ± 8.5.
On the other hand, the magnitude of BI in explosive/ballistic contractions can be as
high as −36% [70].

The mechanisms of BLD are not fully known yet. In general, studies are reporting on
psychological, physiological, and neurological mechanisms. In single-joint movements,
BLD is mainly of neurological origin [71], while in more complex, dynamic movement
tasks, such vertical jumps, the lower mechanical output produced by the legs in bilateral
jumps compared to unilateral jumps is not necessarily a result of reduced neuromuscular
activity alone [72]. In bilateral jumps, the power output of the individual leg is lower
than the power output in the unilateral movement task [72]. For example, in bilateral
CMJ, muscles that extend the legs achieve higher rates of muscle contraction compared to
unilateral CMJ, which means that due to the force–velocity relationship, they produce less
force and less mechanical work [73]. Moreover, it should be also noted that performance of
single leg jump could be affected by poor neuromuscular capabilities associated with a lack
of muscle coordination and balance to jump strictly in the vertical direction, thus affecting
bilateral index. In addition, muscle activity is lower in the initial position when performing
a bilateral jump compared to a unilateral jump, which is due to the distribution of the body
weight between two limbs [37,69]. As a result, lower limb muscles are less active in the
initial part of the bilateral jump compared to the unilateral jump [69]. Muscle contractions
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are faster when performing bilateral movement tasks compared to unilateral ones, because
in bilateral tasks, more force can be produced at the same relative load [72]. This suggests
that the FV relationship is an important determinant of BLD. Indeed, it has been shown
that the more an individual’s FV profile favors velocity (i.e., velocity dominance of the
profile), the smaller the loss of the force from unilateral to bilateral movement tasks due to
the changes in movement velocity [70]. Furthermore, the simulations by Bobbert et al. [72]
suggest that 75% of the BLD in the CMJ could be explained as consequence of faster muscle
contractions in bilateral jumps compared to unilateral jumps. Theoretically, this could
mean that BLD can be reduced or increased by training directed to the velocity capabilities
in specific movement tasks, which would reflect a greater ability to produce force at a
given velocity and thus greater performance in selected movement task (e.g., higher jump).
Nevertheless, more studies are required to confirm this hypothesis. Moreover, previous
studies have demonstrated that resistance training emphasizing bilateral actions decreases
the BLD, while the training involving unilateral exercises increases it [74–76], which could
be important information for guiding training-related decision making, such as preferential
inclusion of bilateral or unilateral exercises into athletes’ training programs.

To the best of our knowledge, only five studies regarding the associations between
BLD and sport performance have been conducted [73,77–80]. The first study by Bračič
et al. [73] found that BLD in CMJ was moderately related to peak forces recorded at the rear
leg during sprint start and higher total force impulse in elite male sprinters. Based on the
reported results, sprinters with higher BLD produced lower rear leg forces and lower total
force impulse, suggesting that BLD should be minimized for the optimization of sprint
start. However, this study did not report any measures of performance, such as sprint
times. Furthermore, Bishop et al. [78] reported that higher BLD could be beneficial for CoD
performance. The study reported that higher BLD calculated from CMJ height, CMJ con-
centric impulse, and drop jump flight time is moderately related to superior performance
in 505 CoD tests, as well as smaller CoD deficit. On the other hand, they did not find any
associations between sprinting performance and BLD. Similar findings were published
a year later in a study on basketball and tennis players, but the reported associations
were relatively weak [79]. Inconsistent with reported studies, Ascenzi et al. [77] found no
relationship between BLD in CMJ and linear sprint performance or CoD performance in
male soccer players. The most recent study on the topic reported no associations between
CoD performance and BLD in isokinetic knee extension, and no associations between
CoD performance and BLD in SJ variables [80]. Nevertheless, we should be careful about
generalizing those results because of the methodological issues related to small sample
sizes and, consequently, low statistical power [73,78,80]. Two of the five studies discussed
above were also not conducted on athletes [78,80]. Based on the current evidence, BLD
seems to be positively associated with CoD ability, but not with sprinting performance.
Although the CoD is a complex movement task that requires good movement coordination,
those findings suggests that BLD from CMJ could present an interesting method to better
understand the missing link for improving CoD performance.

An interesting argument was pointed out by Škarabot et al. [69], that the BLD should
not be necessarily viewed as deficit, but rather as “unilateral facilitation”, which can be ma-
nipulated by the choice of training type (i.e., unilateral or bilateral type of exercises) [74,75].
Although BLD is associated with some specific movement tasks, it should be interpreted
with caution for sport diagnostic purposes. Previous studies have demonstrated that resis-
tance training emphasizing bilateral actions decreases the BLD, while the training involving
unilateral exercises increases it. If the bilateral facilitation is noted, it is recommended for
team sport athletes to incorporate unilateral exercises into their training regime [81] (unless
bilateral performance is of primary importance, as in ski jumping). During unilateral
training, we can produce greater force per leg, which also reflects in faster morphological
changes [71,82]. This could be important information for strength and condition coaches in
team sports, because they usually do not have sufficient time available for physical prepa-
ration; thus, any method that positively affects this aspect would be worth consideration.
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Nonetheless, more studies are needed to further clarify the relevance of BLD for sport
performance and thus to help coaches reliably make training-related decisions based on
the BLD metrics.

5. Force–Velocity Relationship

FV profiling has recently been proposed as a tool to identify the neuromuscular capa-
bilities of athletes and to optimize their training [83]. FV profiling allows the identification
of the mechanical capabilities of the musculoskeletal system to produce force, power, and
velocity [84]. Since the early studies on this topic [85], it has been known that the FV
relationship in single-joint movements is approximately hyperbolic, while novel studies
have shown that the FV relationship in multi-joint tasks is quasi-linear [84,86]. This linear
relationship enables us to use linear equations to calculate maximal theoretical force (i.e.,
the F-intercept; F0), maximal theoretical velocity (V-intercept; V0), and maximal power
(Pmax = F0 V0/4) [84]. The x- and y-axis intercepts (F0 and V0) determine the slope of
the FV relationship, displaying the individual ratio between force and velocity qualities.
Athletes with steeper FV profiles are better at generating high forces at low velocities, and
vice versa [87]. Due to its simplicity and cost effectiveness, FV profiling is often applied
for different movement tasks, such the vertical jump [87], sprint running [88], and bench
press [89]. Nevertheless, it is also important to note that the values of the FV relationship
parameters (F0, V0, and Pmax) depend on the movement task.

Vertical jump and bench press FV profiles are usually evaluated through performing
the selected movement with systematic increment of loads. Regarding the jumping FV
relationship, studies on a sample of athletes from different sports report great variability
regarding the values of F0 (29–40 N/kg), V0 (2.2–4.3 m/s), and Pmax (20–30 W/kg) [83,90].
There is also great variability regarding the FV deficit/dominance. While the aforemen-
tioned studies report a 45–137% imbalance of the optimal FV profile, studies on football
and volleyball players report velocity-dominant profiles (FV imbalance = 33–65%) [91,92].

On the other hand, sprinting FV can be evaluated with a 30 m sprint with split times
being recorded every 5 m. Although longer distances are needed to reach top speeds in
elite athletes, the 0–30 range is sufficient to extrapolate maximal force (F0) and velocity
(V0) capabilities. In addition to F0, V0, Pmax, and the slope of the FV relationship, FV
profiling in sprinting allows the evaluation of the ability to produce force in the horizontal
direction in the acceleration phase [88] and sprinting mechanical efficiency (i.e., maximal
ratio of horizontal-to-resultant force, RF) [93]. Similar to the jumping FV relationship,
there is also great variability in the values of sprinting FV parameters (regarding the
gender and different sports). Haugen et al. [94] reported that F0 is approximately 9%
higher in men (7–10 N/kg) than in women (6–9 N/kg) athletes, while F0 in elite sprinters
is around 11 N/kg [95]. Similar differences between men (7.5–11.0 m/s) and women
(6.0–9.5 m/s) are also reported for the V0 [94], while elite sprinters achieve values as
high as 12 m/s [95]. Higher differences between sexes are reported for the Pmax (men:
13–25 W/kg vs. women: 11–21 W/kg), with similar differences between gender also in
elite sprinters (men: 30.3 ± 2.5 W/kg vs. women: 24.5 ± 4.2 W/kg) [95]. Regarding the
sprint-specific parameters, RFmax is reported to be around 37–48% in women and 41–52%
in men, with values up to 57% in elite sprinters. DRF in men and women is similar (7–11%),
while elite sprinters achieve values of DRF around 6.4% [96].

The literature suggests that the FV profile can provide meaningful data to implement
individualized training programs [27,83]. Interventional studies show that exercises im-
plementing high loads improve athletes’ ability to produce force and increase F0, while
training in high-velocity conditions (i.e., plyometric training) increases the V0 [97]. Thus,
different types of training can be used to change the slope of the FV profile. Studies show
that by changing the slope of the FV relationship, we can improve the jumping performance
independently of the changes in maximal power capabilities [83,98]. On the other hand,
a recent interventional study from Lindberg et al. [90] showed no improvements in sport
performance in team sport athletes with training based on individual FV characteristics.
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Training toward an optimal SJ FV profile did not show favorable effects in SJ height, CMJ
height, 10 and 30 m sprint time, 1RM strength, or leg-press power compared to participants
either training away from their optimal profile or balanced training irrespective of their
initial FV profile. On the other hand, increasing Pmax in the SJ was positively associated
with increases in jumping height, but not with the sprinting performance. However, this
study reported just the basic metrics of physical performance but not any measures of
sport-specific performance. In terms of sprinting, there is no universal “optimal” FV profile.
Rather, there are optimal FV profiles for each combination of a given Pmax and a given
distance [99]. Athletes who wish to maximize short-distance sprint performance (5–10 m)
should aim for a force-dominant FV profile, whereas athletes interested in longer sprint
performance should strive to achieve a more velocity-dominant profile. Interested readers
are referred to a recent work by Samozino et al. [99], wherein the values for optimal sprint
FV profile are given across different combinations of Pmax and distance.

Furthermore, some studies focus on the association between the FV relationship and
athletic performance. A study on volleyball players reported strong correlations between
F0 in jumping FV, V0 in sprinting FV, and moderate correlations between F0 in bench
press FV and Pmax in all three movements with ball speed in the volleyball spike and
serve [89]. Moreover, it has been reported that the CoD ability is related to F0 and Pmax
of the sprinting FV profile, while the parameters of the FV relationship in the vertical
jump showed only few small correlations with CoD [29]. One of our studies reported
that approach jump performance was influenced by Pmax (r = 0.53) and F0 (r = 0.51) in
sprinting, as well as F0 in jumping (r = 0.45). On the other hand, only the FV variables
obtained from sprinting alone contributed to explaining linear sprinting and CoD ability
(r = 0.35–0.93) [100]. Marcote-Pequeño et al. [92] reported that jump height was strongly
correlated with Pmax and moderately with V0 in both jumping and sprinting FV profiles in
elite female football athletes, while moderate correlations with F0 were found only in the
sprinting FV profile. On the other hand, 20 m sprint performance was strongly correlated
with F0, V0, and Pmax in sprinting FV profile and moderately with Pmax and V0 in jumping
FV profile. In terms of correlations of FV profiles across tasks, this study reported high
correlations between Pmax in sprinting and Pmax in jumping, and moderate correlations
between V0 in sprinting and V0 in jumping. These results suggest that Pmax could present a
general measure of lower limb capacity, while F0 and V0 are more specific to the movement
task. Based on the reviewed literature, the relevance of the proposed use of FV profiles to
guide training regimens in athletes is promising, although it has also been questioned by
recent reports [90]. It could be suggested that in general, training should prioritize power
ability, while reducing a theoretical FV imbalance could be used as a supplementary part
of the training for improving basic physical performance. In other words, it seems to be
important to work on shifting the entire FV curve to the right and improving power across
the entire FV continuum, while correcting theoretical FV imbalance should be a secondary
goal. Furthermore, it seems to make sense to test the FV profile in basic movements (i.e.,
jump, sprint, and bench press) and check associations with sport-specific performance (e.g.,
spike or serve speed) to gain a deeper insight into the biomechanical characteristics of a
specific movement with the intention to help guide training-related decisions regarding the
improvement of sport-specific performance.

6. Conclusions and Practical Applications

A summary of the findings of this review is included in Table 1. Except the EUR,
all the above-described variables (to some extent) have potential for evaluating sport
performance. When obtaining these selected variables, we systematically change some of
the movement components (load in FV relationship; inclusion of eccentric part in EUR;
unilateral performance compared to bilateral performance in BLD; drop height in RSI) to
gain a deeper insight into an individual’s neuromuscular performance. Although these
“alternative” variables are more complex in biomechanical terms, they are mostly relatively
simple to perform, with no need for additional technology beyond what is already necessary
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for performing the conventional tests. Furthermore, the literature reports that even more
affordable devices such as contact mats and phone apps (e.g., MyJump 2) are valid and
reliable tools for assessing jump height [101] and thus for evaluating BLD and FV profile in
jumping, and even for measuring the RSI [102].

Based on this review, the evidence suggests limited utility of the EUR in sport settings.
Future interventional training studies should monitor EUR to reveal if there is any utility
in this metric at all. From a practical standpoint, the current knowledge implies that EUR
does not represent a useful metric for decision making regarding training design. Older
literature has established EUR as an indicator of the ability to store and reuse elastic energy,
but subsequent research has shown that the difference between SJ and CMJ is mainly due
to active state development in the eccentric phase of the CMJ, which enables athletes to
execute the jump with higher average force throughout the propulsive phase.

RSI could be a useful method for preseason testing to detect female athletes with higher
injury risk (threshold: RSI < 0.91; 30.5 cm box) [63] and for in-season testing to measure
explosiveness and readiness for the match (high difference between pre- and post-practice
in RSI values is desired for better physical performance on game day). Moreover, the RSI
is a useful tool for designing individually tailored plyometric training. Furthermore, the
principle of progression should be respected in the training process. A six-week progressive
cycle could be suggested, with the following week being a tapering or de-load week. For the
new training cycle, the optimal drop height should be re-tested. This scheme of planning
plyometric training could be adopted and adjusted to the needs of a specific sport or athlete.

Based on the currently available studies, BLD could be associated with CoD ability,
but not with sprinting performance. Moreover, previous studies have demonstrated that
resistance training emphasizing bilateral actions decreases BLD, while training involving
unilateral exercises increases it, which means that BLD could be manipulated by the choice
of training type. Furthermore, if bilateral facilitation or low levels of BLD are observed, it
could be suggested to incorporate unilateral exercises into training regime, especially for
team sport athletes performing several CoD actions. Nonetheless, more studies are needed
to further clarify the relevance of BLD for sport performance and thus to help coaches
reliably make training-related decisions based on BLD metrics.

Regarding the FV relationship, the results indicate that Pmax could present a general
measure of lower limb capacity, while F0 and V0 are more specific to the movement task.
This means that Pmax can be evaluated in any movement task to gain insight into an
individual’s capability to produce power, while F0 and V0 should be tested in a movement
that is associated with sport-specific movement tasks to obtain information about further
training adjustments regarding FV imbalance. Moreover, knowing the associations between
the FV profile in basic movements (i.e., jump, sprint, and bench press) and sport-specific
performance could be useful to guide training-related decisions regarding the improvement
of sport-specific performance. Parameters of the FV relationship could be improved by
implementing specific exercises into the training design. For example, high-loads are
recommended for increasing F0, while for increasing V0, training should be performed in
high-velocity conditions (i.e., plyometric training). Nevertheless, based on the results of a
recent interventional study, it could be suggested that in general, training should prioritize
power ability, while reducing a theoretical FV imbalance could be used as a supplementary
part of the training for improving basic physical performance.

Although some of the variables were reported as useful tools to guide training-related
decision making for improving athlete performance, the basic training principles should
not be missed. In this context, one of the key training principles is movement specificity,
which suggests that the best performance indicator should be the task that best resembles
the demands of the sport-specific movements. One of the important components of the
principle of specificity is the force vector theory, which describes that the direction of the
resistance force vector relative to the body plays a role in transference to sport-specific
performance [103,104]. Furthermore, we should always consider the basic characteristics of
the main sport-specific movements from the perspective of the muscle contraction type,
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velocity of the movement, and body segments involved. Moreover, it must be stressed that
despite the indicated usefulness of described biomechanical variables for deeper insight
into athletes’ neuromuscular function, such measurements require more time and expertise,
and must be performed by qualified practitioners. Furthermore, traditional “first level”
tests (jumps, sprints, RM tests, CoD tests) could be less affected by accuracy than presented
“second level” tests when the mathematical calculation includes an exponent formula. In
addition, practitioners need to be aware that for each presented variable, different protocols
and different measurement devices exist, and thus, validity may not be the same for all
combinations. The gold standard to evaluate force–time curves are force plates [14–16]
and thus are the most reliable method to evaluate the selected biomechanical variables
(EUR, RSI, BLD, FVP). Therefore, it is suggested that before using one of the presented
variables for sport diagnostic purposes, protocol and measurement devices should be
carefully selected.

This review revealed some new opportunities for future research to learn more about
presented in-depth macroscopic behavior level testing for sport performance and training
optimization. While most of the reviewed tools (apart from EUR) are to some extent pre-
sented as potentially useful tools for guiding training-related decisions, more interventional
studies are needed to know more about their usefulness in certain training circumstances.
Moreover, it would be interesting to analyze the relationship (and changes in time) between
different biomechanical variables and sport-specific performance over a longer period
of time (for example, the whole season). Fitness testing often occurs at multiple time
points throughout a year for team sport athletes (pre-, mid-, and post-season are common),
which could provide an opportunity for future studies. Finally, the variables in the review
covered only a limited aspect of performance. Other performance variables, particularly
sport-specific variables, should be also studied to know more about the usefulness of those
tools for analyzing sport-specific performance. An interesting perspective and opportunity
for future research would be also to study how additional cognitive tasks (e.g., distractions
or decision making) that simulate game situations influence neuromuscular performance,
and along with that, if the combination of these tests (neuromuscular performance with
cognitive component) correlates with sport performance.
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Table 1. Summary of the review findings.

Variable Calculation Typical Values Equipment Practical Application

EUR CMJ/SJ 1.05–1.15
Force plate, jump mat, smart phone app,

optical sensor (optojump), inertial
measurement unit (IMU)

EUR is probably not suitable to be interpreted as good or bad in isolation. The relevance of
EUR should be determined in the context of the specific sport. Thus, general

recommendations for training decisions cannot be given based on the value of the EUR.

RSI RSI = Jump height/contact time
RSImod = Jump height/time to take off

RSI = 1.0–2.5
RSImod = 0.25–0.60

Force plate, jump mat, smart phone app,
optical sensor (optojump), inertial

measurement unit (IMU)

RSI could be a useful method for preseason testing to detect female athletes with higher
injury risk and for in-season testing to measure explosiveness and readiness for the match.

RSI is a useful tool for designing individually tailored plyometric training, with the
recommendation being to perform DJ from the height associated with the highest RSI values.

BLD (Bilateral/(right + left unilateral) *
100))–100

Dynamic contractions: −11.7–9.7%
Ballistic contractions: up to −36%
Isometric contractions: −8.6–8.5

Force plate, jump mat, smart phone app,
optical sensor (optojump), inertial

measurement unit (IMU)

BLD could be associated with CoD ability. Moreover, BLD can be manipulated with
resistance training. Emphasizing bilateral actions decreases the BLD, and emphasizing

unilateral exercises increases it. If the bilateral facilitation or low levels of BLD are observed,
it could be suggested to incorporate more unilateral exercises into the training regime (unless
bilateral performance is of primary importance, as in ski jumping), especially for team sport

athletes performing several CoD actions.

FVP
jump

Linear regression, using force and velocity
data from individual loads to obtain F0, V0,
and FV slope. Excel spreadsheet available

from Samozino’s group.
Pmax = F0 V0/4

F0 = 29–40 N/kg
V0 = 2.2–4.3 m/s

Pmax =20–30 W/kg

Force plate, jump mat, velocity tracker,
smart phone app, optical sensor

(optojump), linear encoder, inertial
measurement unit (IMU)

Mandatory equipment: weights,
measurement tape

Pmax presents a general measure of lower limb capacity, while F0 and V0 are more specific to
the movement task. It could be suggested that in general, training should prioritize power
ability, while reducing a theoretical FV imbalance could be used as a supplementary part of

the training for improving basic physical performance. Parameters of the FV relationship can
be improved by implementing specific exercises into training design, such as high loads for

increasing F0, and training in high-velocity conditions (i.e., plyometric training) for
increasing V0.

FVP
sprint

Linear regression, using force and velocity
data from individual steps to obtain F0, V0,
and FV slope. Excel spreadsheet available

from Samozino’s group.
Pmax = F0 V0/4

F0 = 6–10 N/kg
V0 = 6–11 m/s

Pmax = 11–25 W/kg
RFmax = 37–53% DRF = 7–11%

Timing gates, smart phone app, gun
radar, lidar, linear encoder

Similar to the FVP in jumps, Pmax is a general measure of lower limb capacity, while F0 and
V0 are more specific to the movement task. RFmax and DRF are specific metrics for evaluating

sprinting efficiency. Training towards specific FVP characteristics for improving sport
performance should be based on the characteristics of a selected movement task (e.g.,
improving volleyball spike speed or approach jump performance). Thus, knowing the

associations between the FV profile in basic movements (i.e., jump, sprint, and bench press)
and sport-specific performance could be useful to guide training-related decisions regarding

the improvement of sport-specific performance.

EUR—eccentric utilization ratio; CMJ—countermovement jump; SJ—squat jump; RSI—reactive strength index; RSImod—modified RSI (from CMJ); BLD—bilateral deficit; FVP—force–
velocity profile; F0—maximal theoretical force; V0—maximal theoretical velocity; Pmax—maximal power; RFmax—maximal ratio of horizontal-to-resultant force; DRF—decrease in
the RF.
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