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Abstract: The aim of this study was the biochemical and kinetic characterization of the gentisate
1,2-dioxygenase (GDO) from Pseudarthrobacter phenanthrenivorans Sphe3 and the development of
a nanobiocatalyst by its immobilization on Ni2+-functionalized Fe3O4-polydopamine magnetic
nanoparticles (Ni2+-PDA-MNPs). This is the first GDO to be immobilized. The gene encoding the
GDO was cloned with an N-terminal His-tag and overexpressed in E. coli. The nanoparticles showed
a high purification efficiency of GDO from crude cell lysates with a maximum activity recovery
of 97%. The immobilized enzyme was characterized by Fourier transform infrared spectroscopy
(FTIR). The reaction product was identified by 1H NMR. Both free and immobilized GDO exhibited
Michaelis–Menten kinetics with Km values of 25.9 ± 4.4 and 82.5 ± 14.2 µM and Vmax values of
1.2 ± 0.1 and 0.03 ± 0.002 mM·s−1, respectively. The thermal stability of the immobilized GDO was
enhanced at 30 ◦C, 40 ◦C, and 50 ◦C, compared to the free GDO. Stored at −20 ◦C, immobilized GDO
retained more than 60% of its initial activity after 30 d, while the free enzyme completely lost its
activity after 10 d. Furthermore, the immobilized nanoparticle–enzyme conjugate retained more than
50% enzyme activity up to the fifth cycle.

Keywords: Pseudarthrobacter phenanthrenivorans Sphe3; gentisate 1,2-dioxygenase; His-tagged enzyme;
magnetic nanoparticles; oxidoreductase immobilization

1. Introduction

Microorganisms, with their ability to degrade a vast variety of xenobiotic aromatic
compounds, under either aerobic or anaerobic conditions, have contributed significantly to
the removal of these pollutants from the environment. Although these compounds present
a great diversity as far as the number of rings and modifications are concerned, their
aerobic biodegradation is invariably funneled through a limited number of dihydroxylated
aromatic intermediates, such as catechol, protocatechuate, and gentisate. The subsequent
oxygenolytic cleavage of their aromatic ring is catalyzed by enzymes called ring-fission
dioxygenases, which are classified as two major groups according to the position of the
cleavage of the aromatic ring: intradiols, cleaving the ring between the hydroxyl group
(ortho cleavage), and extradiols (Types I and II), cleaving the ring adjacent to the hydroxyl
group (meta cleavage). In contrast, non-catecholic intermediates, such as gentisate (a para-
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diol), that are subject to extradiol-type cleavage are cleaved by a third type of extradiol
dioxygenase (Type III) belonging to the cupin superfamily proteins [1].

Gentisate (2,5-dihydroxybenzoate) is cleaved by gentisate 1,2-dioxygenase (GDO),
which catalyzes the ring fission of gentisate between the carboxyl and the proximal hydroxyl
group (para position) in the aromatic ring, to form maleylpyruvate [2]. All to-date-reported
GDOs belong to the bicupin protein superfamily [3–5].

Microbial enzymes that are able to cleave aromatic compounds substituted with a hy-
droxyl group in the para-position are of industrial interest for the removal of environmental
recalcitrant compounds [6].

Aromatic degradation through the gentisate intermediate has been reported in various
studies [7–14]. Although several GDOs have been characterized, they are mainly derived
from Gram-negative bacteria [6,15–22], whereas there is little information about GDOs
from Gram-positive bacteria [4,23,24].

While dioxygenases hold an important role not only in bioremediation of contaminated
environments, but also in many technological processes, their potential in biotechnological
applications is narrowed not only by the various environmental factors that affect the biore-
mediation processes, but also by free enzymes’ low stability and oxidation susceptibility,
resulting in enzymes’ deactivation [25]. Moreover, multimeric enzymes’ inactivation has
been attributed to the dissociation of their subunits in solutions [26–29]. To tackle these
challenges, enzymes are being immobilized onto a solid support in order to optimize their
performance. The application of a proper immobilization method combined with a suitable
immobilization carrier could improve enzymes’ operational stability under harsh reaction
conditions, their tolerance against harmful agents and inhibitors, and their specificity or
selectivity towards various substrates and prevent subunit dissociation for multimeric
enzymes. Furthermore, it could even be coupled with enzyme purification, enabling its
easy separation and thus reducing the time and cost of any purification and recovery
methods required [26,30,31].

Various immobilization supports have been used for the immobilization of dioxyge-
nases, such as sodium alginate [32], single-walled carbon nanotubes [33,34], multi-walled
carbon nanotubes [35], Fe3O4 nanoparticles [36], and fulvic-acid-activated montmoril-
lonite [37]. Among these supports, magnetic nanoparticles (MNPs) stand out due to their
attractive properties, such as their high surface-to-volume ratio and strong magnetization
values, which facilitate their separation from the reaction mixture and thus the efficient
re-use of the biocatalyst [38]. Until now, notwithstanding the cost of their synthetic route
and a typically observed reduced biocatalytic activity [39], magnetic nanoparticles have
been widely applied for the immobilization of various classes of enzymes, making them an
appealing immobilization support [40]. Specifically, affinity magnetic nanomaterials have
recently gained significant attention for simultaneous purification and immobilization of
histidine (His)-tagged proteins [41]. This method is based on the principle of immobilized
metal affinity chromatography (IMAC), widely used for protein purification and separation.
Immobilized metal ions by chelation onto a chromatography resin interact with a His-tag,
forming a reversible coordination bond, which allows the separation of histidine-tagged
proteins from the untagged ones [42]. The bound molecule can be eluted from the resin by
reducing the pH and increasing the ionic strength of the buffer or using EDTA or imidazole.
Employing genetic engineering methods allows for the production of tagged enzymes by
attaching His residues at a specific position of the protein without altering the enzyme’s
activity or folding. These tags are usually placed at the N- or C-terminus of the recom-
binant proteins in the form of a poly-histidine tail. Then, immobilization of the enzyme
becomes possible via the interaction of the histidine tail with the nickel ions. It is worth
noting, however, that the reversibility of the binding process or the undesired release of the
metals to the reaction medium may be a drawback in many cases [43]. The employment
of magnetic nanoparticles for protein purification requires fewer purification steps, an
obvious advantage when compared to the far more complex and laborious column chro-
matography methods [44]. Affinity magnetic nanoparticles enable the efficient adsorption
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of proteins and can thus facilitate the separation of a target protein in low-concentration
samples. Furthermore, their surface functionalization with biopolymer materials, such as
polydopamine [41,45], constitutes a simple and economic synthetic method under mild
conditions. On the other hand, the widely employed conventional affinity materials and
techniques utilize bridging molecules, such as nitrilotriacetic acid (NTA) [46–48], and are
characterized as inconvenient and time-consuming processes, usually requiring hazardous
reagents. The polydopamine surface coating of the nanoparticles can offer many advan-
tages, such as biocompatibility, water dispersibility, and adhesion properties due to the
presence of catechol hydroxyl groups. More specifically, the catechol group could per-
form chelation with metal ions, such as Ni2+, so that the metal ions could be indirectly
immobilized on polydopamine-modified substrates. Until now, nickel-functionalized poly-
dopamine magnetic nanoparticles have been employed for the purification of a His-tagged
red fluorescent protein [41], while titanium-functionalized polydopamine magnetic micro-
spheres have been used for the enrichment of biological samples with phosphopeptides [49],
suggesting the widespread applications of these immobilization supports.

Pseudarthrobacter phenanthrenivorans Sphe3, a Gram-positive bacterium, is able to
catabolize phenanthrene as the sole source of carbon and energy [50]. In silico analysis of
the Sphe3 genome revealed a gene on the pASPHE301 plasmid that encodes for a putative
gentisate 1,2-dioxygenase (gtdA gene).

To the best of our knowledge, no study on the immobilization of gentisate 1,2-dioxygenase
from Gram-positive bacteria has yet been published. For the first time, the recombinant
gentisate 1,2-dioxygenase from P. phenanthrenivorans Sphe3 was cloned, expressed, char-
acterized, and immobilized on the surface of nickel-functionalized Fe3O4-polydopamine
magnetic nanoparticles (Ni2+-PDA-MNPs). The recombinant enzyme was immobilized on
Ni+2-PDA-MNPs while being simultaneously purified utilizing the His-tag affinity with
the Ni+2-functionalized surface of the magnetic nanoparticles.

The results of this study should be useful for dioxygenase immobilization on nanoma-
terials, developing an efficient nanobiocatalytic system utilized in bioremediation processes,
aiming to lower the cost and performance of these processes.

2. Materials and Methods
2.1. Materials

Iron (II, III) oxide nanopowder, 50–100 nm particle size (SEM), 97% trace metals basis,
and dopamine hydrochloride were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Nickel (II) sulfate hexahydrate (*6H20O), 99%, was purchased from Acros Organics. Phenan-
threne was purchased from Fluka. Sodium dodecyl sulfate (SDS) was purchased from
Honeywell Riedel-de Haën™ (Seelze, Germany), and Bis-acrylamide was bought from Carl
Roth (Karlsruhe, Germany). Isopropyl β-d-1-thiogalactopyranoside (IPTG) and protein
markers were purchased from New England Biolabs (Ipswich, MA, USA) and Thermo
Fisher Scientific (Waltham, MA, USA). All other chemicals used in the present study were
bought from Sigma Aldrich (St. Louis, MO, USA).

2.2. Bacterial Strains and Media

P. phenanthrenivorans Sphe3T (formerly Arthrobacter phenanthrenivorans Sphe3 = DSM
1860T = LMG 23796T) was isolated from a creosote-polluted area in Epirus, Greece [50].
Sphe3 was grown in M9 minimal medium (MM M9) supplemented with gentisate (5 mM) or
phenanthrene (15 mM) as the sole carbon and energy sources, as previously described [51].
Escherichia coli DH5a and BL21 (DE3) were cultured in lysogeny broth (LB) medium in the
presence of kanamycin (Km), when necessary, for selection.

2.3. Preparation of Sphe3 Cell-Free Extracts

Crude Sphe3 cell-free extracts were prepared as described previously [52]. The pro-
tein concentration was determined spectrophotometrically, according to the Bradford
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method [53], using the Bio-Rad reagent (Bio-Rad Laboratories, Hercules, CA, USA) and
bovine serum albumin (BSA) (Amresco Inc., Solon, OH, USA) as the standard.

2.4. Cloning and Heterologous Expression of the Gentisate 1,2-Dioxygenase Gene

In silico analysis of the Sphe3 genome in the DOE Joint Genome Institute database
(JGI—https://img.jgi.doe.gov; accessed on 10 November 2020) revealed an orf of 1122 bp
that encodes the putative gentisate 1,2-dioxygenase (GDO), located on the indigenous
plasmid pASPHE301 and annotated gtdA. Genomic DNA was isolated from Sphe3 cells
grown on phenanthrene according to the standard JGI (California) protocol for bacterial
genomic DNA isolation using cetyltrimethylammonium bromide (CTAB) [54]. GtdA gene
was amplified by polymerase chain reaction (PCR) in a thermal cycler (PTC-100, v.7.0—MJ
Research Inc., Waltham, MA, USA) programmed at 95 ◦C for 5 min, 35 cycles of 98 ◦C for
20 s, 66 ◦C for 15 s, 72 ◦C for 1 min, and a final elongation step of 72 ◦C for 5 min, using
KAPA HiFi (Roche Diagnostics, Basel, Switzerland) polymerase enzyme and a specific
primer pair (forward primer: 5′-AGAGATTCATATGACTGAGAACATC-3′, reverse primer:
5′-AGGAGTTTGGATCCTTGGTG-3′) carrying binding sites for NdeI and BamHI (under-
lined) restriction enzymes. The amplified DNA fragment was purified by NucleoSpin
Extract 2 in 1 (Macherey-Nagel GmbH & Co. KG, Dueren, Germany), cloned into the
pCR-blunt vector (Invitrogen, Thermo Fischer Scientific, Watham, MA, USA) for nucleotide
sequence verification, and subsequently subcloned with NdeI/BamHI restriction in the
overexpressing vector pET29c(+) (Novagene Co., Ltd., Beijing, China). The recombined
pET29c::gtdA was used to transform BL21 (DE3) cells for heterologous expression as de-
scribed elsewhere [51]. Host transformation was carried out either according to Hanahan
(for E. coli DH5a strain) [55] or according to Chung and Miller (for E. coli BL21 (DE3)
strain) [56]. Gene nucleotide sequence verification was carried out by VBC Genomics
Bioscience Research GmbH (Wien, Germany). Sequence alignments were performed using
the program BLAST [57] on the NCBI website, and amino acid sequences that exhibited
similarity with GDO were retrieved from protein databases and aligned using CLUSTALW
(accessed on 23 November 2021) [58]. To conduct phylogenetic tree and molecular evolution-
ary analyses, MEGA v.7.0 was used applying the neighbor-joining method [59]. Restriction
enzyme digestion, ligation reaction, and agarose, as well as SDS-PAGE electrophoresis
were carried out using the standard methodology [60].

2.5. Crude Lysate Preparation and GDO Purification

The abovementioned E. coli BL21(DE3)-pET29c(+) host–vector overexpression system
was used for the overexpression of the GDO polypeptide, as described elsewhere [51], with
the slight modification of harvesting the cells by centrifugation 3 h after the addition of
IPTG. For the enzyme purification, cell-free supernatant was applied to a 20 mL HisPrep
FF 16/10 column (GE Healthcare, Chicago, IL, USA) using an AKTA FPLC system (GE
Healthcare, Chicago, IL, USA), as described before [52].

2.6. Enzyme Assays, Kinetic Measurements

The activity of GDO under standard conditions was estimated spectrophotometrically
by measuring the increase in absorbance at 330 nm as described by Feng et al. [15]. The
reaction was initiated with the addition of the crude cell-free extract or the recombinant
purified GDO solution. One enzyme unit is defined as the amount of enzyme that produces
1 µmol of maleylpyruvate per minute at 25 ◦C. The kinetic parameters Km and Vmax
values were determined in a broad concentration range of gentisate substrate varying from
0.003 mM to 3 mM, with EnzFitter (Biosoft) software by nonlinear fitting of the Michaelis–
Menten equation. All kinetic values are the means of three separate measurements. The
effect of pH in the activity of recombinant GDO was investigated in the pH range of 4 to
12 at room temperature, as described elsewhere [52]. To determine the optimal temperature
for the GDO, the above assays were performed in a temperature range of 5 ◦C to 80 ◦C in
the optimal pH. To study the effect of activation and inhibition by metal ions, the enzyme

https://img.jgi.doe.gov
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was incubated with different concentrations of FeSO4·7H2O/L-ascorbic acid, CuSO4·5H2O,
MnSO4·H2O, MgSO4·7H2O, and NiCl2·6H2O, as described before [52]. The influence of
different chelating agents on the GDO activity was tested by incubating samples of the
purified enzyme (1 µM) with concentrations of EDTA up to 20 µM for 120 min at 0 ◦C
and o-phenanthroline up to 30 µM for 180 min at 0 ◦C in 50 mM Tris-HCl buffer pH 8.0.
The enzyme reaction was initiated by adding 0.3 mM gentisate. All enzyme assays were
performed at 25 ◦C using a Shimadzu UV-1201 spectrophotometer (Triad Scientific, Inc.,
Manasquan, NJ, USA).

2.7. Synthesis of Ni2+-Polydopamine Magnetic Nanoparticles

The Ni2+-PDA-MNPs were synthesized according to Yang et al. [41], with slight
modifications. Briefly, in a typical synthesis protocol, 10 mg of commercially available iron
oxide magnetic nanoparticles (Fe3O4) was dispersed in 10 mL of Tris-HCl buffer (25 mM,
pH 8.0) for 30 min in an ultrasonic bath. Subsequently, 10 mg of dopamine hydrochloride
was added to the above dispersion and mixed under constant magnet stirring (750 rpm)
for 12 h at 25 ◦C. The polydopamine functionalized magnetic nanoparticles were then
gathered through magnetization and washed several times with water. Afterwards, the
nanoparticles were added to 10 mL of 100 mM NiSO4 solution and mixed under constant
stirring (750 rpm) for 2 h at 25 ◦C. Finally, the freshly prepared Ni2+-PDA-MNPs were
collected with the use of an external magnet, washed twice, and stored in deionized water
for further use.

2.8. Selective Immobilization of the Recombinant GDO on Ni2+-PDA-MNPs

For the selective immobilization of recombinant gentisate 1,2-dioxygenase on Ni2+-
PDA-MNPs, 100 µL of freshly prepared magnetic nanoparticles (2 mg/mL), ultrasonically
dispersed in Tris-HCl buffer (50 mM, pH 8.0), was added to 900 µL of cell-free extract
containing the recombinant GDO (total protein concentration of 4 mg/mL). Then, the
mixture was incubated at room temperature for 30 min, under constant magnetic stirring
(650 rpm). After incubation, the nanobiocatalyst was separated from the reaction mixture
with the use of an external magnet, washed twice with buffer, and stored at −20 ◦C for
further use. Several parameters affecting the immobilization yield such as the ratio of Ni2+-
PDA-MNPs to total enzyme mass (1:2, 3:2, 4:2, and 1:10) and the incubation time (30 min and
120 min) were examined and optimized, in order to attain the maximum immobilization
yield. The immobilization percentage was determined by measuring the activity in the
stock-free enzyme solution and also through the determination of the remaining activity in
the supernatant and in the immobilization solution after the immobilization procedure, as
suggested elsewhere [61,62].

2.9. Characterization of the Nanobiocatalyst
2.9.1. Fourier Transform Infrared Spectroscopy

In order to confirm the characteristic functional peaks of the nanobiocatalyst, FTIR
spectroscopy was performed through an FTIR-8400 infrared spectrometer (Shimadzu,
Tokyo, Japan) equipped with a deuterated triglycine sulfate (DTGS) detector. All spectra
were recorded within the 400–4000 cm−1 range and an average of 32 scans.

2.9.2. Identification of Nanobiocatalyst Reaction Product

There was 40 µL of nanobiocatalyst used in a 1 mL reaction with gentisate as the
substrate at a final concentration of 0.3 mM. The reaction was kept at 4 ◦C for 12 h, and after
centrifugation, the supernatant was transferred to a 5 mm NMR tube in 50 mM Tris buffer
pH 8.0, 90% H2O, and 10% D2O. The 1HNMR experiment was performed on a Bruker
AV500 spectrometer (Bruker Biospin, Rheinstetten, Germany) at 298 K using the Topsin
3.2 suite. The water suppression was achieved by the use of an excitation sculpting pulse
sequence (zgesgp).
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2.9.3. Determination of Apparent Kinetic Parameters

The apparent kinetic constants (Km, Vmax) of the immobilized biocatalyst were deter-
mined by measuring the initial reaction rates at varying concentrations of the gentisate
substrate at 25 ◦C as described above. The concentrations of gentisate ranged from 0.01 mM
to 0.3 mM. The apparent Michaelis–Menten constant (Km) and maximum velocity (Vmax)
were calculated from non-linear regression fitting of the initial reaction rates corresponding
to different substrate concentrations by the EnzFitter (Biosoft) software.

2.9.4. Thermal Stability of Free and Immobilized Biocatalyst

Thermal stability studies of the free and immobilized biocatalyst were performed by
incubating each form of the enzyme in Tris-HCl buffer (50 mM, pH 8.0) at 30 ◦C, 40 ◦C,
and 50 ◦C for 24 h. The remaining activity of the free and immobilized biocatalyst was
determined at different time intervals (1 h, 3 h, 6 h, 9 h, and 24 h) through the activity
assays, as described above. All experiments were carried out in triplicate.

2.9.5. Storage Stability Studies

The storage stability of the free and immobilized form of the biocatalyst was estimated
during storage at −20 ◦C. The activity of each sample was evaluated at standard day
intervals for a total of 30 d. The activity of each enzyme after standard day intervals was
estimated in terms of residual activity using the respective assay by considering the activity
of the first day to be 100%.

2.9.6. Reusability Studies of Immobilized Enzyme

The reusability of the immobilized nanobiocatalyst was determined through the com-
pletion of continuous batch reactions for the cleavage of gentisate to form maleylpyruvate.
Each reaction cycle was carried out for 10 min in Tris-HCl buffer solution (50 mM, pH 8.0).
After each cycle, the nanobiocatalyst was separated from the reaction mixture through
magnetization, washed efficiently with Tris-HCl buffer solution (50 mM, pH 8.0), and
then, re-suspended in fresh substrate solution to initiate a new reaction cycle. The process
was repeated for 10 successive cycles. The activity of the nanobiocatalyst after each cycle
was assessed by means of residual activity. The activity of the first cycle was considered
as 100%.

3. Results and Discussion
3.1. Phylogenetic Analysis, Cloning, and Overexpression

The predicted protein product of the 1122 bp gentisate 1,2-dioxygenase gene (gtdA)
from P. phenanthrenivorans Sphe3 shared 92.7% sequence identity at the amino acid level
with gentisate 1,2-dioxygenase (GDO) of Arthrobacter sp. (strain FB24). Based on a phylo-
genetic analysis of 18 GDO amino acid sequences with Molecular Evolutionary Genetics
Analysis software v.7.0 (MEGA7) [59] using the neighbor-joining method [63], it was found
that Sphe3-GDO clustered with similar dioxygenases from other Gram-positive bacteria.
In particular, Sphe3-GDO was most closely related to the gentisate 1,2-dioxygenase from
Arthrobacter oryzae with Arthrobacter sp. FB24, Arthrobacter globiformis NBRC 12137, and
Arthrobacter sp. P2b, completing the brunch clustering (Figure 1).

The gtdA from P. phenanthrenivorans Sphe3 was amplified by PCR, cloned, and ex-
pressed as a His-tagged protein in E. coli BL21 (DE3) using the pET29c(+) overexpression
vector. The recombinant GDO resulted in a protein band of ~41 kDa, as determined
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Figure S1),
corresponding well to the predicted, by the in silico analysis, Mw of 41.45 kDa.
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Figure 1. Phylogenetic tree of Sphe3 1,2-GDO and other Gram-positive 1,2-GDO dioxygenases. The
dioxygenases used for the construction of the phylogenetic tree presented >70% identity with GDO.
1,2-GDO from the Gram-negative Brevundimonas sp. M20 (QDH73246.1), showing 38% identity with
Sphe3 1,2-GDO, served as the outer brunch. The tree was constructed with the neighbor-joining
algorithm. The percentage of replicate trees in which the associated dioxygenases clustered together
in the bootstrap test (500 replicates) is shown next to the branches. The scale bar indicates the number
of substitutions per nucleotide position. Accession numbers are in parentheses. 1,2-GDO: gentisate
1,2-dioxygenase.

3.2. Enzyme Activity Assay and Characteristics of Purified GDO

The cell-free extract of BL21 (DE3) cells showed a specific activity of 1.7 U·mg−1 protein
against gentisate, whereas the purified enzyme, which was at least 95% homogeneous,
exhibited specific activity of 10.7 U·mg−1 protein. Purification of GDO was achieved
by a HisPrep FF 16/10 column, prepacked with precharged Ni Sepharose 6 Fast Flow,
using a step gradient as described in the “Materials and Methods”. The fractions of the
overexpressed protein were eluted at ~150 mM imidazole, pooled, and assayed for activity.

The purified GDO displayed Michaelis–Menten kinetics with an apparent Km
25.9 ± 4.4 µM and Vmax 1.2 ± 0.1 mM·s−1 as estimated at 25 ◦C. The Km value of GDO
for gentisate is lower than or similar to values reported for gentisate 1,2-dioxygenases
from other organisms (85 µM, Pseudomonas testosteroni and 74 µM, Pseudomonas acidovo-
rans [16]; 15 µM, Sphingomonas sp. RW5 [18]; 92 µM, Pseudomonas alcaligenes NCIB 9867 and
143 µM, Pseudomonas putida NCIB 9869 [15]; 31 µM and 10 µM, Polaromonas naphthalenivo-
rans CJ2 [20]; 130 µM, Corynebacterium glutamicum [23]), revealing a high affinity with
gentisate as the substrate. The turnover number of GDO was also similar to the values
reported for other organisms [18,19], exhibiting a Kcat value of 60 ± 3.4 s−1, whereas the
Kcat/Km value was 231.6 × 104 s−1·M−1.

The purified enzyme was highly unstable as it lost 75% of its initial specific activity
when it was stored at 4 ◦C for 48 h. Similar results have also been reported previously for
GDOs purified from Klebsiella pneumoniae M5al, Sphingomonas sp. strain RW5, Pseudomonas
alcaligenes NCIB 9867, Pseudomonas putida NCIB 9869 and Ralstonia solanacearum GMI
1000 [15,18,22,64]. The enzyme could not be stabilized by the addition of glycerol (10% v/v),
ethanol (10% v/v), and DMSO (1% or 10%, v/v). Moreover, the addition of Fe2+ increased
the enzyme activity by 3.7-fold. In fact, when the purified enzyme was incubated in the
presence of the 0.2 mM FeSO4/L-ascorbic acid solution for 30 min at 0 ◦C, its specific
activity reached at 39.6 U·mg−1 protein. This suggests that the active site Fe2+ is probably
lost during the purification process and exogenously supplemented Fe2+ activated the
purified enzyme [65,66]. Ferrous iron is the catalytically competent metal cofactor as has
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been established by biochemical studies [64,67]. Similar results have also been reported
previously, presenting an increased GDO activity by 160% for P. alcaligenes NCIMB 986710,
by 115% for E. coli O157:H7, and by 34% for the Martelella strain AD-3 [6,68,69]. Ferrous
biding is also important for the GDO activity of Silicibacter pomeroyi, in which both the N
and C domain maintain the histidine triad and bind with Fe2+, unusually with other GDOs
where the N-terminal cupin domain binds metal and maintains the active site [4,21].

Incubation with various concentrations of Cu2+, Mn2+, Mg2+, and Ni2+ for 30 min
exhibited inhibitory effects, leading to an enzymatic activity loss of 47%, 14%, 5%, and
43%, respectively. The addition of Cu2+ and Mn2+ could also inactivate the GDO from Pseu-
domonas alcaligenes NCIB 9867, Pseudomonas putida NCIB 9869, and Ralstonia solanacearum
GMI 1000 [15,22], whereas Cu2+ and Mn2+ activated GDO from the Martelella strain AD-
3 [69]. Moreover, the incubation of GDO with metal-chelating agents led to a significant
reduction or even complete inhibition of the enzyme’s activity. Specifically, incubation with
different concentrations of EDTA for 180 min reduced GDO’s activity, while incubation
with o-phenanthroline for 120 min attained to inhibit the enzyme’s activity (Table 1).

Table 1. Metal-chelating agents used in various concentrations for incubation with purified GDO.

Concentration (µM)
Relative Activity (%)

EDTA o-Phenanthroline

0 100 100
5 95 41
10 50 10
15 48 4
20 46 0
25 44 N/A
30 40 N/A

These findings for the herein studied gentisate 1,2-dioxygenase are in compliance
with studies about dioxygenases possessing iron Fe2+ at their active sites being sensitive to
chelators [15,65,70,71].

3.3. Immobilization of Recombinant Gentisate 1,2-Dioxygenase

The magnetic nanobiocatalyst was prepared by cross-linking the overexpressed His-
tagged gentisate 1,2-dioxygenase without purification from the cell-free crude extract onto
magnetic nanoparticles (MNPs) employing the His-tag affinity of the recombinant enzyme
to the Ni2+-functionalized surface of the MNPs (Figure 2).

One-step immobilization and purification methods have been applied before for a His-
tagged transaminase [41], a histidine-tagged green fluorescent protein [72], an extracellular
His-tagged Thermomyces lanuginosus lipase [73], and even for the co-immobilization of
two components of hydroxylase monooxygenase that were employed to construct a bi-
enzymatic catalytic system [46]. Moreover, Zhou et al. studied the selective purification
and immobilization of a His-tagged recombinant glucose dehydrogenase onto NiFe2O4
magnetic nanoparticles in a one-step procedure [74]. The abovementioned methodology
allowed for the selective purification of the recombinant GDO through immobilization on
the nanocarriers.



Appl. Microbiol. 2022, 2 121

Figure 2. Scheme of the one-step immobilization and purification of His-tagged GDO on Ni2+-PDA-
Fe2O4 magnetic nanoparticles.

In order to achieve the maximum enzyme loading onto the surface of the Ni2+-
functionalized MNPs, several parameters, such as the incubation time and the MNPs-
to-enzyme-mass ratio, were examined and optimized. Regarding the incubation time,
30 min and 120 min were examined, revealing that an incubation time of 30 min seems to
favor the enzyme’s immobilization yield (Figure S2). Concerning the mass ratio of Ni2+-
PDA-MNPs to the total enzyme amount, several mass ratios (1:2, 3:2, 4:2, and 1:10) were
tested. The enzyme’s activity recovery does not seem to be significantly affected at different
mass ratios (Figure 3). However, the lowest activity recovery was observed at the highest
mass ratio of 1:10, probably due to the insufficient available surface area of the nanocarrier
to load the large amount of enzyme, resulting in decreased activity recovery [75,76]. The
increase of the amount of MNPs led to an increase of the enzyme’s activity recovery, and
specifically, the maximum activity recovery was observed at the ratio of 4:2 (Figure 3).

Figure 3. Immobilization parameters optimization in relation to magnetic nanoparticles-to-enzyme-
mass ratio.
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This could probably be attributed to the fact that a higher amount of nanoparticles
could be beneficial to capture the His-tagged protein from the cell-free lysate. Therefore,
based on the results presented above, the optimum parameters for the immobilization
of recombinant GDO on Ni2+-PDA-MNPs comprised a 30 min incubation time and 4:2
nanoparticles-to-enzyme-mass ratio. Under these conditions, the maximum activity recov-
ery was 97%.

3.4. Characterization of the Nanobiocatalyst
3.4.1. Fourier Transform Infrared Spectroscopy

The successful binding of GDO on the prepared magnetic nanoparticles was confirmed
with FTIR analysis. Figure 4 shows the FTIR spectra for the magnetic nanoparticles, the
cell-free crude extract from E. coli BL21/pET29c::gtdA, and the GDO-bound Fe3O4. The
specific amide group absorptions, amide I, II, and III, in the region 1200–1700 cm−1 suggest
the presence of a H–N–C–O unit [77,78]. The obvious peak at 1631 cm−1 on the crude
extract is also present on the nanoparticles containing the immobilized GDO, therefore
suggesting the attachment of the enzyme to Fe3O4 nanoparticles. This particular peak,
which is attributed to C=O stretching vibrations of the enzymes corresponds to the amide I
band. The FTIR spectrum of the immobilized GDO is also characterized by a distinct peak at
1551 cm−1, which is due to the C–N stretching and N–H bending vibrations corresponding
to the amide II band.

Figure 4. Fourier transform infrared (FTIR) spectra of MNPs (black), cell-free crude extract (blue),
and immobilized GDO (red).

The immobilized GDO was separated with the assistance of a magnetic field and
washed twice with Tris-HCl buffer. The immobilized GDO was eluted from the Ni2+-
PDA-MNPs with 0.5 mL elution buffer containing imidazole at a final concentration of
500 mM. Finally, the collected samples were analyzed by SDS-PAGE to verify the binding
specificity between the His-tagged GDO and MNPs. The target protein in the cell lysates
was significantly reduced in the supernatant of the immobilization reaction after mixing
with the MNPs, while no significant changes in other protein bands were observed (Figure 5,
Lane 2). After elution by imidazole, the eluent appeared as a single protein band at 41 kDa,
as seen in Figure 5, Lane 3.



Appl. Microbiol. 2022, 2 123

Figure 5. SDS-PAGE protein analysis for the purification of immobilized GDO from the nanobio-
catalyst. Lane M, protein molecular mass marker in kDa; Lane 1, cell-free crude extract from E. coli
BL21 (DE3)-pET29c::gtdA; Lane 2, supernatant from the immobilization reaction; Lane 3, eluted GDO
protein (41 kDa) with 500 mM imidazole elution buffer.

The abovementioned data combined verify that the His-tagged GDO could bind specif-
ically to Ni2+-PDA-MNPs, proving that the functionalized nanoparticles can effectively be
used for the separation and purification of His-tagged protein.

3.4.2. Identification of the Nanobiocatalyst Reaction Product

The 1HNMR spectrum was recorded after the reaction took place for 12 h at 4 ◦C. The
assignment of the gentisate proton NMR resonances is in accordance with literature [79].
The 1HNMR resonances of the maleylpyruvate product are presented for the first time to
our knowledge. The peak at 5.75 ppm was attributed to proton H3 and the quartet peak
at 6.21 ppm to protons H5 and H6, which overlapped (Figure 6). The substrate and the
product ration after 12 h of reaction was 1:1.

Figure 6. 1H NMR spectrum of the gentisate (blue) biotransformation product, maleylpyruvate (red)
in 50 mM Tris buffer 90% H2O and 10% D2O. (number of scans = 64, acquisition time = 4 s, relaxation
delay = 1.5 s, total experimental time = 6 min 22 s).
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3.4.3. Comparison of Free and Immobilized GDO Kinetic Parameters

The intrinsic (for the free form of the enzyme) and apparent (for the immobilized
enzyme) Michaelis–Menten constants were determined through the nonlinear regression
fitting of the initial reaction rates, with respect to varying gentisate concentrations. As
shown in Table 2, the apparent Km value of the immobilized form of GDO is higher than
that of the free enzyme.

Table 2. Apparent kinetic constants of free and immobilized GDO.

Enzyme Km (µM) Vmax (mM·s−1)

GDO free form 25.9 ± 4.4 1.2 ± 0.1
GDO immobilized 82.5 ± 14.2 0.03 ± 0.002

An increase in the Km value is typically observed after immobilization. This increase
could probably be attributed to conformational changes on the protein molecule after
immobilization that reduce its flexibility and, thus, restrict the diffusion of the substrate
to the active site of the enzyme. These results are in agreement with previous studies that
reported an increase in the Km value after immobilization [40]. Furthermore, Jiao et al.,
recently reported an increase in the Km value after immobilizing a recombinant carbonic
anhydrase II from human (hCA II) on Ni-based metal-organic framework nanorods [80].
Moreover, the apparent Vmax value was significantly decreased after immobilization, indi-
cating lower enzymatic reaction rates of the substrate, probably due to the steric hindrance
of the support after immobilization. Lower Vmax values after enzyme immobilization were
similarly reported before [33,81]. In another study, Zhou et al. reported about a 6.7-fold
decrease in the Vmax value after the immobilization of a His-tagged recombinant glucose
dehydrogenase (GluDH) on NiFe2O4 magnetic nanoparticles [74].

3.5. Stability of Free and Immobilized Biocatalyst
3.5.1. pH and Temperature Stability Studies

The activity of free and immobilized gentisate 1,2-dioxygenase was measured at
different pH values. Free and immobilized GDO were found to be active within pH 5.0
and 10.5, while at pH 4.5 and pH 11.0 both forms of the enzyme completely lost their
activity. The pH range 7–12 was preferred for the comparison of the free and immobilized
enzymes, due to the fact that the histidine residues of the His-tag are protonated in acidic
environments, resulting in the decomposition of the His-tag-Ni2+ complex. As shown in
Figure 7, the activity profiles for the free and immobilized GDO were different and the pH
value of optimum activity shifted from 8.0, for the free enzyme, to 9.0, for the immobilized
enzyme. Such a slight shift in pH towards the alkali region after immobilization on
nanocarriers has been reported before for other dioxygenases. Di Nardo et al. [82] observed
a shift in pH from 8.5 to 9.5 after immobilizing catechol 1,2-dioxygenase on nanosponges.
Moreover, Suma et al. found that after immobilizing hydroxyquinol 1,2-dioxygenase onto
single-walled carbon nanotubes, the pH value for the optimal activity changed to 8.0 in
comparison to pH 7.0 for the free enzyme [33]. According to Das et al., the immobilization
of protocatechuate 3,4-dioxygenase onto functionalized multi-walled carbon nanotubes
showed an improvement of activity against a higher alkali region, indicating higher stability
compared to its free counterpart [35].



Appl. Microbiol. 2022, 2 125

Figure 7. Effect of pH on the activity of GDO in its free form (black) and after immobilization
(colored). The activities at the optimal pH were set to 100% for each case.

The effect of temperature on GDO activity was evaluated in 50 mM Tris-HCl buffer
(pH 8.0) at temperatures ranging between 5 ◦C and 80 ◦C for both the free and immobilized
enzyme. The free enzyme was found to be active in the abovementioned temperature
range with an optimum activity at 50 ◦C, while its activity was remarkably reduced to
38% and 8% relative activity at 5 ◦C and 80 ◦C, respectively. No significant differences
were observed when the effect of temperature on the immobilized enzyme was studied
(Figure S3), demonstrating that the optimum temperature for both free and immobilized
enzymes was 50 ◦C, thereafter declining with further increases in temperature. This finding
is in agreement with a previous study reporting no change in the temperature optima after
immobilization onto functionalized magnetic nanoparticles for b-glucosidase (BGL) from
Aspergillus niger [83].

3.5.2. Thermal Stability Studies

Among the great advantages of immobilizing an enzyme onto a solid support is to
expand its lifespan at extreme conditions, as well as to develop biocatalysts with enhanced
catalytic characteristics, widening their industrial applications. An increase in the thermal
stability of the biocatalyst after immobilization consists a competitive advantage, suggesting
improved resistance to unfolding during long-term incubation [38]. In order to study the
influence of temperature on the thermal stability of the biocatalyst, the free form of GDO,
as well as the immobilized enzyme were incubated at different temperatures (30 ◦C, 40 ◦C,
and 50 ◦C) and their stability was investigated by measuring the residual activity at
standard time intervals. A similar trend appeared for both forms of GDO with the residual
activity decreasing as the temperature increases. However, the immobilized enzyme was
significantly more stable than the free enzyme at all temperatures (Figure 8), retaining
more than 30% of its initial activity even after 24 h of incubation at all tested temperatures,
while the free enzyme lost almost completely its initial activity after 9 h at 30 ◦C and
40 ◦C. At 50 ◦C, no activity could be measured for the free form of the enzyme after 6 h
of incubation. Similar results, suggesting enhanced thermal stability, have been reported
for the immobilization of His-tagged β-glucosidase via Fe3O4-PMG core–shell magnetic
nanoparticles [84].
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Figure 8. Thermal stability studies of GDO in its free form (black) and GDO immobilized (colored)
during storage at 30 ◦C (a), 40 ◦C (b), and 50 ◦C (c) for various timepoints up to 24 h. The activity of
the first timepoint was set to 100%.

More specifically, the free enzyme completely lost its activity at 60 ◦C, while the im-
mobilized one retained almost 75% of its initial activity, suggesting that the binding of
His-tagged enzyme onto the nickel-modified magnetic nanoparticles could possibly protect
the enzyme’s active site, avoiding heat denaturation. Additionally, since the majority
of known GDOs from Gram-negative and Gram-positive bacteria are tetramers [4,6], it
is worth noting that the His-tag-Ni2+ complex may have caused the protein to become
less prone to conformational change, protecting the enzyme from thermal denaturation.
As reported in the Introduction, the first step of the inactivation of some multimeric en-
zymes is the enzyme subunit dissociation induced by heat [26,27]. The application of
nickel-functionalized polydopamine nanoparticles for the immobilization of a His-tagged
ω-transaminase also significantly improved the enzyme’s thermal stability, as well as pH
tolerance [41]. Das et al. observed a similar behavior regarding the thermal stability of the
immobilized protocatechuate 3,4-dioxygenase onto functionalized multi-walled carbon
nanotubes [35]. Furthermore, a three-times higher (when compared with the free enzyme)
thermal stability of catechol 1,2-dioxygenase immobilized on a nanosponge was reported
by Di Nardo et al. [82]. Our results, as well as the studies mentioned suggest that the
immobilization of His-tagged enzymes through affinity immobilization methods could
lead to the development of robust biocatalysts, exhibiting great stability against denatu-
ration in high-temperature environments. Especially, when concerning the dioxygenase
enzymes that are typically characterized by low thermal stability, the immobilization onto
appropriate supports constitutes one of the most effective ways to enhance their stability
and, thus, broaden their applications.

3.5.3. Storage Stability Studies

Enzyme inactivation or protein denaturing, environmental changes, active-site poi-
soning or blockage, and a decrease in the enzyme–substrate complex formation result
in enzyme activity loss and low stability, rendering the direct application of enzymes in
bioremediation processes ineffective [85,86]. The instability of dioxygenases for long time
periods seems to be a common issue among these types of enzymes [18,64]. For this reason,
the storage stability remains a crucial parameter when concerning such enzymes. The
storage stability of the free and immobilized biocatalyst was tested, and the results are
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presented in Figure 9. The purified GDO was found to be extremely unstable in 50 mM
Tris-HCl buffer. After 48 h of storage at 4 ◦C in Tris-HCl buffer, its activity decreased to
25% of the original activity (data not shown). No activity was detected for the enzyme after
96 h of storage at 4 ◦C.

Figure 9. Storage stability study of GDO in its free form (black) and after immobilization (colored)
during storage at −20 ◦C for 1 month. The activity of the first day was set to 100%.

The storage stability for the immobilized magnetic complex was studied for a total of
30 d during storage at −20 ◦C in an aqueous buffer solution (Tris-HCl 50 mM, pH 8.0). As
shown in Figure 9, the immobilized GDO retained more than 60% of its initial activity after
30 d, while no residual activity was detected upon the same storage conditions for the free
form of the enzyme. This result is in agreement with other studies where immobilization
of enzymes extends their storage stability [87,88]. For example, during 10 d of storage,
the His-tagged carbonic anhydrase II immobilized on Ni-based metal-organic framework
nanorods maintained 40% activity, while the free enzyme lost 91% of its initial activity [80].
These results indicate that the immobilization of His-tagged enzymes on Ni-modified
supports could provide stability and mechanical protection towards denaturation against
prolonged storage.

3.5.4. Reusability Studies of Immobilized Enzyme

One of the greatest advantages enzyme immobilization offers is reusability, especially
when magnetic nanoparticles are applied as the nanocarrier. To study the nanobiocatalyst’s
reusability, the immobilized enzyme was recovered by magnetic separation from the
reaction mixture after each batch reaction, washed thoroughly with buffer, and added
to fresh substrate solution for the next batches. As shown in Figure 10, the immobilized
biocatalyst could be efficiently reused for five reaction cycles. It can be observed from
Figure 10 that the activity of the immobilized GDO decreased with the increase of the
recycling number. However, more than 50% of the enzyme’s initial activity was retained
for five cycles of consecutive use. GDO’s relative activity, though decreased, was also
detectable for five more cycles (data not shown). This loss in activity could be probably
attributed to any mechanical damage of the biocatalyst during the recycling process along
with product inhibition, as has been previously reported [76].
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Figure 10. Reusability study of the immobilized GDO. The activity of the first cycle was set to 100%.
The number above each bar in the scheme represents the immobilized enzyme’s relative activity,
expressed in percentage units, for each cycle.

Although no reusability data of gentisate 1,2-dioxygenase have been reported by any
other study so far, similar data can be comparable to other enzymes immobilized on various
supports [35,46,84,89,90]. Consequently, our study demonstrates that GDO immobilized on
MNPs can be efficiently reused, which would be of great benefit for practical applications.

4. Conclusions

This is the first report on the biochemical and kinetic characterization of a gentisate
1,2-dioxygease in the genus Arthrobacter. Gentisate 1,2-dioxygenase from P. phenanthrenivo-
rans Sphe3 (GDO) was overexpressed, purified and characterized for its biochemical
and kinetic properties. The recombinant GDO enzyme was immobilized onto nickel-
functionalized polydopamine-coated magnetic nanoparticles (Ni2+-PDA-MNPs). In sum-
mary, a simple and efficient method for the immobilization of the recombinant GDO
without prepurification was applied by using iron oxide Ni2+-PDA-MNPs to simultane-
ously purify and immobilize the His-tagged enzyme directly from the cell-free culture
supernatant via affinity binding. The developed nanobiocatalyst was characterized by
Fourier transform infrared spectroscopy (FTIR), and its reaction product was identified by
1H NMR. The optimal conditions for the immobilization of gentisate 1,2-dioxygenase onto
Ni2+-PDA-MNPs were found to be 30 min of incubation time and a 4:2 nanoparticles-to-
enzyme-mass ratio, yielding an activity recovery of 97%. Biochemical parameters such as
kinetic constants and thermal stability were also evaluated. The analysis of the apparent
kinetic constants revealed an increase in the Km value followed by a decrease in the Vmax
value after immobilization compared with the free form of the enzyme. In addition, due to
the magnetic core of the Ni2+-PDA-MNPs, the biocatalyst could be efficiently separated
from the reaction through magnetization, facilitating its reuse, thus retaining significant
enzyme activity for up to five consecutive reaction cycles. Furthermore, compared with the
free enzyme, the immobilized biocatalyst exhibited better thermal stability in a wide range
of temperatures. The immobilized GDO retained more than 60% of its initial activity after
30 d of storage at −20 ◦C compared to the extremely unstable free enzyme. The numerous
advantages of immobilization through His-tag affinity promote high yields and efficiency
of the total process, suggesting the good potentials this method holds for the design of
novel biocatalysts for a wide range of applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/applmicrobiol2010007/s1, Figure S1: SDS-PAGE protein analysis;
Figure S2: Immobilization parameters’ optimization in relation to incubation time; Figure S3: Effect
of temperature on the activity of GDO.
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