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Abstract: This novel study investigated the loading of mupirocin nanoparticles into a hydrogel which
was expected to enhance the antibacterial activity of mupirocin. The inhibition of isoleucyl-tRNA
synthetase and global gene expression in methicillin-resistant Staphylococcus aureus (MRSA) by the
mupirocin nanoparticle-loaded hydrogel (MLH) and by pure mupirocin was compared. MLH and
mupirocin rapidly inhibited the growth of bacterial populations after 1 h of treatment. At 12 h,
mupirocin and MLH inhibited isoleucyl-tRNA synthetase in MRSA. Transcriptome profiles of MRSA
showed that gene expression alterations after treatment with mupirocin were similar to those after
treatment with MLH at MICs. These alterations included changes to DNA transcription, translation,
and replication pathways, and the fold changes in these genes decreased more rapidly with MLH than
with mupirocin only after 1 h of treatment. MLH released the mupirocin from the nanoparticles and
hydrogel systems and then the drug permeated the cell wall and bound to bacterial isoleucyl-tRNA
synthetase. The research also showed that MLH could be further developed for use in clinics for
infected wounds.

Keywords: MRSA; mupirocin; nanoparticle; gene expression

1. Introduction

The appearance of bacterial infection is a crucial problem for burn wounds. Although
there may be no infection 48 h after injury, Gram (+) bacteria, such as Staphylococcus aureus
and Streptococcus species, may later be found in burn wounds. One week post burn Gram
(−) bacteria appear to dominate. There is also an emerging antibiotic-resistant bacteria-
like methicillin-resistant Staphylococcus aureus (MRSA) that has been discovered in burn
wounds. The increasing prevalence of MRSA poses an emerging global health threat
and is associated with high rates of morbidity and mortality [1–3]. MRSA bacteremia
may be treated with common topical antibiotics, such as silver sulfadiazine, neomycin,
bacitracin, and mupirocin [4,5]. Mupirocin is produced by the bacterium Pseudomonas
fluorescens. It is highly effective against Gram-positive bacteria, such as S. aureus, including
MRSA. The mechanism of action is protein synthesis inhibition by binding to isoleucyl-
tRNA synthetase. Mupirocin formulations are commercially available drugs used to
treat skin wound infections in operative wounds, burn wounds, and diabetic wounds.
Mupirocin is available as a cream and an ointment. However, the cream and ointment-based
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medications have disadvantages, such as greasiness and viscosity, which are undesirable
for the drug user [6]. Moreover, 2% mupirocin ointment with polyethylene glycol requires
application three times daily, leading to poor patient compliance. Furthermore, mupirocin
is slowly metabolized by the skin to an inactive form. Therefore, controlled release of
topical delivery of mupirocin will improve its efficacy and decrease the frequency of
application to once daily [7,8]. In previous reports on mupirocin retardation of wound
healing, liposomes in hydrogel [9] and nano-liposomes [10] were developed to improve
therapeutics [11] and reduce toxicity compared with mupirocin alone. Nevertheless, there
are limitations to the approaches, such as the sensitivity of liposomes to high temperatures
during sterilization. When the temperature rises above 25 ◦C, the liposomes release the
drug and other constituents [11].

In our previous study, mupirocin nanoparticle-loaded hydrogels (MLHs) were suc-
cessfully developed which were expected to enhance or improve the antibacterial activity
of mupirocin [12]. Previous work on the antibacterial activity of mupirocin has primar-
ily focused on in vitro conditions, such as minimum inhibitory concentration (MIC) and
the minimum antimicrobial concentration needed to eradicate infectious organisms, or
minimum biocidal concentration (MBC). These studies confirmed the antibacterial activity
of mupirocin and its mechanism of action, together with gene expression analysis. To
date, systematic studies of gene expression after treatment with mupirocin formulated in
hydrogels have not been reported. This is probably because the bacterial gene expression
purification of quantities sufficient to obtain bacterial RNA is technically difficult. RNA
sequencing (RNA-seq) can offer data analysis of the entire transcriptome of a sample and
can be used to investigate levels of gene expression. Gene expression analysis can be
used to monitor response genes to compare the treatment of pure mupirocin with MLH.
The study of gene expression can also interlace the profiles of several gene expressions to
explain the similarities or differences in MRSA genes after mupirocin or MLH treatment.
This technique provides a strong alternative to employing microarrays in examinations of
the gene expression of MRSA. Therefore, this study investigated the inhibition of isoleucyl-
tRNA synthetase and global gene expression in MRSA by MLH compared with mupirocin.
MRSA was stained with fluorescein diacetate (FDA) dye to monitor cell viability, and gene
expression was studied via high-throughput RNA-seq. The evidence for MLH therapeutics
is considered and discussed.

2. Materials and Methods
2.1. Materials

Kolliphor® P407, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene
glycol), (EO98-PO64-EO98; P407) was a gift from the Vita Company Limited (Bangkok,
Thailand). Poly(vinyl alcohol), average MW 31,000–50,000, 87–89% hydrolyzed product,
was obtained from Sigma-Aldrich (Dorset, UK). Sodium borate gelatin was received from
the PC Drug Center Co., Ltd. (Bangkok, Thailand). Mupirocin was purchased from Kirsh
Pharma Asia Pacific Pte. Ltd. (International Business Park, Singapore). TRIzol® Reagent
(Life Technologies, Carlsbad, CA, USA), a Qubit 2.0 fluorometer and Qubit RNA assay kits (Life
Technologies, Carlsbad, CA, USA), AMPure XP beads (Agencourt BioSciences Corporation,
Beverly, MA, USA), and an Illumina® TruSeq™ RNA Sample Preparation Kit for paired-end
reads sequencing on a HiSeq 2000 were all purchased from Illumina, San Diego, CA, USA. The
solvents, chemicals, and biochemicals used in each study were of analytical grade.

2.2. Bacterial Strains

MRSA (DMST 20646) was purchased from the Thailand Institute of Scientific and
Technological Research (WDCM 383; Bangkok, Thailand).

2.3. Preparation of MLH

The hydrogel was prepared by dispersing the P407 in ultrapure water by mechanical
stirring (400 rpm). Then, the stock solutions were stored in a refrigerator at 4 ◦C for at least



Appl. Microbiol. 2022, 2 262

24 h. The crosslinking PVA hydrogel was produced by adding sodium borate into PVA
solution. Blending formulations of P407 hydrogel and cPVA hydrogel were prepared by
mixing P407 and cPVA in ratio of 80:20. The ratios of 80:20 of P407:cPVA hydrogel were
selected for loading with mupirocin nanoparticles. Mupirocin nanoparticles were obtained
by spray drying mupirocin with gelatin. Mupirocin nanoparticles (2% w/w mupirocin) were
loaded into the hydrogel formulation. The mupirocin nanoparticles containing mupirocin
were slowly added into the P407:cPVA hydrogel and the MLHs were stirred with a glass rod
for 5 min [12]. The MLH formulation is given in the Supplementary Materials (Table S1).

2.4. Minimum Inhibitory Concentration (MIC) and Minimum Biocidal Concentration (MBC)

The MIC was determined by the resazurin microtiter assay 96-well plate method
as follows: standardization of bacterial inoculum was prepared by stepwise dilution
of an overnight-grown culture using sterile Mueller–Hinton broth to obtain a bacterial
concentration of 5 × 106 CFU mL−1. The antimicrobial substance was used within 15 min
of preparation. Then, the plates were incubated at 37 ◦C to observe any color change.
After incubation, resazurin dye solution was added within 4 h. After completion of the
incubation, MIC values were scored from columns with no color change (blue resazurin
color remained unchanged). Direct plating of the content of the wells with concentrations
higher than the MIC value was used to determine the MBC value. Finally, the plates
without colonies of bacteria were scored.

2.5. Bacterial Viability Using Flow Cytometry

For the bacterial culture, MRSA colonies were inoculated into Luria–Bertani broth
(Oxoid, Basingstoke, UK) using a sterilized loop. The broth was mixed well using a vor-
tex mixer to prevent MRSA aggregation, followed by incubation overnight at 37 ◦C in
an incubator shaker. Then, the broth was diluted with fresh antibiotic-free medium and
cultured to mid-exponential phase. Next, we diluted the bacteria to a final concentration
of 5 × 106 CFU mL−1. Inhibitory concentrations of mupirocin (MIC = 0.31 µg mL−1) and
MLH (MIC = 0.31 µg mL−1) were added to MRSA in Luria–Bertani broth. Then, the tubes
were placed in a rotary incubator at 37 ◦C and 200 rpm for 24 h. The bacteria were cultured
from experiments performed in triplicate. Cells were harvested at 0, 6, 12, 18, and 24 h after
treatment with samples in parallel with control cultures.

Bacterial cells were collected by centrifugation at 5000× g for 5 min from the batch
culture, washed three times with filtered DI water, and diluted to an OD546 of approxi-
mately 0.01 (corresponding to 1 × 107 to 5 × 107 cells mL−1). For inactivation, 10 mL of
bacterial suspensions were exposed to MLH for 24 h. Each sample well (500 µL) was taken
and loaded into centrifuge tubes containing 500 µL of FDA (500 ng mL−1) in PBS at pH 7.4.
Before measurements in the flow cytometry analysis, sample cells and FDA solution were
incubated at 37 ◦C for 15 min.

Fluorescein diacetate (FDA) is taken up by live cells in the presence of mupirocin or its
derivatives, and the non-fluorescent FDA is converted into green fluorescent metabolites by
esterases in the cells [13,14]. FDA was employed to monitor cell viability by flow cytometry
measurements. Flow cytometric (Beckman Coulter, PCL Holding Co., Ltd., Brea, CA, USA)
measurements were operated at an excitation laser wavelength of 488 nm with a blue laser.
Optical filters were selected such that red fluorescence was measured above 630 nm (FL3)
and green fluorescence was measured at 520 nm (FL1). Each sample replicate was recorded
at least three times.

2.6. Inhibition of Isoleucyl-tRNA Synthetase in MRSA by MLH

MRSA was cultured in media containing 3 mL of brain heart infusion broth with
50 µg/mL ampicillin maintained at 37 ◦C and shaken at 140 rpm overnight. Next, the
cultured cells were mixed and diluted 1:1000 into 3 mL fresh brain heart infusion broth,
then incubated at 37 ◦C and shaken at 140 rpm for 6 h. Bacterial cells were collected by
centrifugation and washed twice with PBS buffer at pH 7.4. For inactivation, samples of
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bacterial suspension were exposed to 50 mg MLH and incubated at 37 ◦C, after which they
were added to mid-exponentially growing MRSA cells (at 5 h) in Luria–Bertani broth. Cells
were harvested at 0, 1, and 5 h after treatment with samples or 5, 6, and 12 h of growth
curve in parallel with control cultures and cell density was measured at OD600 nm. The
sample cells were fixed with 4% paraformaldehyde (10 min) and incubated in 1% bovine
serum albumin, 10% normal goat serum, and 0.3 M glycine in 0.1% PBS-Tween for 1 h
to permeabilize the cells and block non-specific protein–protein interactions. The cells
were then incubated with anti-isoleucyl-tRNA synthetase antibody at a 1/1000 dilution
overnight at 4 ◦C. The secondary antibody (green) was Alexa Fluor® 488 goat anti-rabbit
IgG, which was used at a 1/1000 dilution for incubation of 1 h. Alexa Fluor® 594 WGA
was used to label plasma membranes (red) at a 1/200 dilution for 1 h, and 4′,6-diamidino-
2-phenylindole (DAPI) was used to stain the cell nuclei (blue) at a concentration of 1.43 M.
Confocal laser scanning microscopy (CLSM; Zeiss LSM 800, Jena, Germany) was used to
record all confocal images.

2.7. Effects of MLH on Gene Expression in MRSA

For RNA extraction, MRSA cells were harvested at 0, 1, and 5 h after treatment, with
samples at 5, 6, and 12 h of the growth curve. The ODs at 600 nm were adjusted to 0.5
for normalization. TRIzol® (0.75 mL) reagent was added to 0.25 mL of each sample to
form a pellet. The samples were mixed vigorously and then centrifuged at 12,000× g at
4 ◦C for 5 min. The clear supernatant was then transferred to a new tube. Chloroform
(0.2 mL) was added to 1 mL of TRIzol® Reagent for lysis [15] and the tube was securely
capped. The samples were incubated at −80 ◦C for 1 h, then centrifuged at 12,000× g for
15 min at 4 ◦C. The mixture separated into three phases: a lower red phenol–chloroform,
an interphase, and a colorless aqueous phase. The RNA contained in the aqueous phase
was moved to a new tube. The pellet was resuspended in 1 mL of 75% ethanol per 1 mL
of TRIzol® Reagent for lysis. The sample was vortexed briefly, then centrifuged for 5 min
at 7500× g at 4 ◦C. The supernatant was discarded. The RNA pellets were placed into
a vacuum for 5–10 min. DNase I was used to prevent DNA contamination. The purity and
concentration of RNA was confirmed by a Thermo Fisher Scientific™ NanoDrop 2000 and
Qubit™ RNA Assay Kits with an Agilent 2100 BioAnalyzer (Agilent Technologies, Palo
Alto, CA, USA) [16].

RNA sequencing was performed at Prince of Songkla University, Thailand. The Ribo-
Zero™ Magnetic Kit (Epicentre Biotechnologies, Madison, WI, USA) was used to deplete
non-coding RNAs from the samples. Then, the Epicentre ScriptSeq v2 RNA-Seq Library
Preparation Kit (Catalogue No. 20021533) was used to prepare RNA-seq libraries that
were started with 20–25 ng of enriched RNA. After 13 cycles of amplification, AMPure XP
beads were used to purify the RNA-seq libraries. Finally, RNA-seq libraries were unified
in equimolar amounts and the quantity and quality of each unit were adjudicated by
a Bioanalyzer. The resultant pools were subsequently sequenced on an Illumina NextSeq
550 system that yielded a total of 25,783,620 paired reads. The quality trimmed FASTQ files
were used to calculate the total number of paired reads, the average Phred quality scores,
and the average GC content [17].

The standard method for measuring and comparing levels of gene expression is high-
throughput sequencing of messenger RNA (RNA-seq). RNA-seq experiments reduce the
raw read data to comprehensible results that generate very large, complex data sets using
software. The free open-source software tools HISAT, StringTie, and Ballgown were used
for comprehensive analysis of RNA-seq experiments. Paired-end 250 bp reads were aligned
with the S. aureus subsp. aureus NCTC 8325 (accession no. NC_007795.1) using HISAT2
(v. 2.1.0) and then we quantified gene abundance using StringTie (v. 2.1.1) [17]. Finally,
statistical analysis of differential gene expression was conducted using R software (v. 3.0.1)
with the Ballgown package (v. 2.2.0) [17]. Differential gene expression was defined as such
when the false discovery rate was ≤0.05 and differential expression ≥2.
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2.8. Data Availability

The sequence read archive data are available from the National Center for Biotechnol-
ogy Information under accession number PRJNA634329. The data can be accessed using
this link: http://www.ncbi.nlm.nih.gov/bioproject/634329 (accessed on 21 January 2022).

Statistical Analysis

All data are presented as means ± standard deviation (SD) of at least three repli-
cates. Paired or unpaired Student’s t-tests were used to compare significant differences
between groups. The post hoc analysis of variance was employed to interpret significant
differences between the means of multiple groups and a p-value < 0.005 was considered
statistically significant.

3. Results
3.1. Antibacterial Activities of MLH

The MLH was more effective as an inhibitory agent than the mupirocin ointment. The
MLH and mupirocin inhibited the growth of all bacteria tested. The results indicated that
the MIC and MBC of MLH were 0.31 µg mL−1 and 2.44 µg mL−1, respectively (Table 1).

Table 1. MIC (µg/mL) and MBC (µg/mL) of mupirocin nanoparticle-loaded hydrogel, mupirocin
ointment, and vancomycin.

Antibacterial
Activities

Sample

Hydrogel MLH Mupirocin
Ointment Vancomycin Mupirocin

(Pure Drug)

MIC - 0.31 0.61 1.56 0.31
MBC - 2.44 9.76 1.56 2.44

In addition, the MIC and MBC of MLH from flow cytometry were 0.30 µg mL−1 and
2.44 µg mL−1, respectively. The live-cell counts obtained within 24 h showed a decrease in
the number of viable bacteria. At 6 h after treatment, the MLH showed a greater decrease
in the number of viable bacteria than mupirocin only, but at 24 h after treatment both
compounds gave similar results. The results were similar to the treated mupirocin at
the MICs. At 24 h, the viable bacteria for the MIC and MBC were 44–49% and 0.2–1.8%,
respectively (Figure 1). Based on the flow cytometric analysis, it was found that the MBC
of mupirocin and MLH killed the MRSA bacteria at 24 h.

The effect of the MIC (0.30 µg mL−1) concentration of MLH on MRSA is shown in
Figure 2. Different sampling times were chosen to observe the inhibition of isoleucyl-tRNA
synthetase in MRSA by MLH (5, 6, and 12 h). The mid-exponential phase was at 5 h of
the growth curve [18] for all group samples. MRSA growth was inhibited after treatment
with mupirocin for 1 h. Moreover, the control cells were in the exponential phase, but the
treatment cells showed the beginnings of reduced growth during the stringent response
after 6 h of the growth curve. The control cells and the treatment cells were in the stationary
phase at 12 h. The effect on MRSA growth up to 24 h was significant between control cells
and treatment cells. For OD600 measurements, the control cells at 5 h approached 0.3,
whereas the treatment cells with MIC of mupirocin and MIC of MLH remained constant at
0.40 and 0.41, respectively, which was not a significant difference (p ≤ 0.005). Mupirocin
and MLH had significant effects at 6 h of the cultures (p ≤ 0.005). The OD600 value for
the control cells reached 0.78, whereas the OD600 values for the treated cells at the MIC of
mupirocin and the MIC of MLH were 0.52 and 0.54, respectively. After 12 h, both the control
cells and the treated cells were in the stationary phase. Mupirocin and MLH had highly
significant effects (p ≤ 0.0005). The OD600 for the control cells reached 1.358, whereas the
OD600 values of the treated cells at the MICs of mupirocin and MLH were 0.49 and 0.44,
respectively (Figure 2).

http://www.ncbi.nlm.nih.gov/bioproject/634329
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MRSA stained with FDA. Flow cytometry used an FL1 detector and 515–545 nm fluorescence of FDA.
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(c) MRSA treated with a MIC of MLH at mid-exponential growth (5 h) (mean ± SD, n = 3).
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The inhibition of isoleucyl-tRNA synthetase in MRSA at the MICs of mupirocin and
MLH was recorded using confocal laser scanning microscopy (Figure 3). The sample
stained with Alexa Fluor® showed the isoleucyl-tRNA synthetase in green and the DAPI
staining showed the cell nuclei in blue (Figure 3). At 12 h, mupirocin and MLH could
inhibit isoleucyl-tRNA synthetase in MRSA compared with the control. The control shows
isoleucyl-tRNA synthetase stained directly with the second antibody (Alexa Fluor®) as
a positive control, whereas mupirocin and MLH show a few cells appearing to be stained.
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Figure 3. Confocal microscopy of MRSA treated with MICs of mupirocin (b) and MLH (c) along
with the control (a) at 12 h stained with Alexa fluor® 488 goat anti-rabbit igg (in green) and DAPI
(4′,6-diamidino-2-phenylindole) (in blue).

3.2. Gene Expression

Transcription profiles were obtained depending on the change of expression level.
Differential gene expression was compared to observe correlations between all samples,
presented as a heatmap in Figure 4. The sample correlation matrix shows the corresponding
gene expression levels between treated samples and controls, where yellow squares indicate
high correlation and blue squares indicate low correlation. We computed RNA-seq data
correlations across all samples. Then, we found high correlations among the sample type
replicates (value > 0.6) and low correlations across different samples (value < −0.2). Thus,
this heatmap can be used to represent gene expression among the control, mupirocin and
MLH (Figure 4).

The relationships between gene expression profiles of the control, MLH, and mupirocin
were investigated and verified the hierarchical clustering of RNA-seq transcriptome data
that was performed (Figure 4). The clustering heat map presents distinct groups of specific
genes expressed by each sample type that appear as blocks in Figure 4. The gene expression
levels of MLH and mupirocin were similar except for the sub-groups of gene expression.
Apparent differences between the control, MLH, and mupirocin can be seen at 12 h which
appear as a light-green block. This is an expression of another clustering group in which
MLH and mupirocin inhibit or down-regulate the MRSA genes. The top 42 enriched genes
are shown in a heatmap (Figure 5).
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of another clustering group in which MLH and mupirocin inhibit or down-regulate the 
MRSA genes. The top 42 enriched genes are shown in a heatmap (Figure 5).  

Figure 4. Sample correlation heatmap based on the level of correlation between the corresponding
samples (control, mupirocin, and MLH).

3.3. Comparison of Gene Expression in MLH, Mupirocin, and Control Samples

Differential MRSA gene expression during the time of treatment with MLH and
mupirocin at the MIC for 2965 genes was obtained at all three time points (5, 6, and 12 h
of the growth curve). After 0 h of exposure to MIC of MLH or at 5 h of the growth curve,
differential expression between controls and cell treatments were found in 1452 genes: 50.5%
(733 genes) were up-regulated and 49.5% (719 genes) down-regulated. With treatment
with mupirocin, differential expression between controls and cell treatment was found for
1466 genes: 52% (762 genes) were up-regulated and 48% (704 genes) were down-regulated.
After 1 h of MIC of MLH exposure or at 6 h of the growth curve, differential expression
between controls and cell treatments was found in 1425 genes (1.9%, a decrease from
0 h): 52.6% (748 genes) of the genes were up-regulated and 47.4% (673 genes) were down-
regulated. After 1 h of treatment with mupirocin, the number of differentially expressed
genes increased by 0.6% compared with gene expression levels at 0 h: 1475 genes were
differentially expressed between controls and the treated samples: 56% (826 genes) were
up-regulated and 44% (647 genes) were down-regulated. After 7 h of MIC of MLH exposure
or at 12 h of the growth curve, differential expression between controls and cell treatments
were found in 1586 genes (9.2% increase from 0 h): 42.2% (670 genes) of the differentially
expressed genes were up-regulated and 57.8% (916 genes) were down-regulated. After 7 h
of treatment with mupirocin, the number of differentially expressed genes increased by
7.7% compared with gene expression levels at 0 h: differential expression between controls
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and cell treatments was found in 1579 genes: 40.7% (642 genes) were up-regulated and
59.3% (937 genes) were down-regulated (Table 2).
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Table 2. Gene expression with bacterial cell treatment with MLH and mupirocin at 5, 6, and 12 h of
the growth curve.

Treatment
% Down-Regulated % Up-Regulated

5 h 6 h 12 h 5 h 6 h 12 h

MLH 50.5 52.6 42.2 49.5 47.4 57.8
Mupirocin 52.0 56.0 40.7 48.0 44.0 59.3

Down-regulation of genes after 0 h of exposure with mupirocin and MLH included
large decreases in DNA replication and translation as well as structural constituents of
ribosomes and activation of amino acid/protein synthesis, carbohydrate metabolism, nu-
cleotide transport, metabolism, and the cell cycle (Table S2). After 1 h exposure with
mupirocin and MLH, the genes were down-regulated by more than 2-fold relative to the
MRSA control cells, but the fold changes in the genes due to MLH decreased more rapidly
than those with mupirocin, as shown in Table 2. After 7 h exposure with mupirocin and
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MLH, the genes were still down-regulated, yet the amount of down-regulation was less
than that after 1 h of treatment. The up-regulated genes after 0 h of mupirocin and MLH
treatment were involved in transcription/stress response and translation as well as acti-
vation of amino acid/protein synthesis and biosynthetic processes (Table S3). In addition,
the ileS gene encoding isoleucyl-tRNA synthetase was up-regulated after 0, 1, and 7 h,
respectively. After 0 h, the mupirocin up-regulated isoleucyl-tRNA synthetase more than
MLH but after 1 and 7 h of exposure at MIC, the MLH up-regulated isoleucyl-tRNA syn-
thetase more than mupirocin only (Table S4). Down-regulation associated with the GTPase
enzymes, encoded by the obgE genes, are interesting. Furthermore, stress response induced
the encoding of addiction module toxins by the nrdR gene, spxA gene, and others. Whereas
the ileS gene was strongly upregulated (p < 0.005), the genes that encode leucyl tRNA and
alanyl-tRNA synthetase were significantly downregulated (p < 0.005) (Tables S5 and S6).

4. Discussion

It is estimated that hundreds of thousands of bacterial species exist in the environment.
From the point of view of human medicine, MRSA is a notable species as it frequently
colonizes the skin and mucosal surfaces [19]. This pathogen is the causes of the clinical
symptoms of infections form a number of extracellular enzymes and exotoxins. Previ-
ous studies showed that MLH could release a drug from the nanoparticle and hydrogel
systems [10] that permeated the cell wall and bound to the bacterial isoleucyl-tRNA syn-
thetase. The isoleucyl-tRNA formation with mupirocin form isoleucine obstructs incorpo-
ration of isoleucine into protein chains, resulting in inhibition of protein synthesis [20,21].
Mupirocin was found to be highly effective against Gram-positive cocci, such as MRSA,
in this study [20]. It is clearly shown that the MBC is drug concentration- and exposure
time-dependent. MLH showed superior activity against MRSA compared with mupirocin,
indicating that the nanoparticle in the hydrogel system promoted more drug transport into
the bacterial cells.

Given the RNA-seq data analysis, it is possible that, with the MLH, mupirocin, having
been released from the hydrogel system, affected MRSA cells after 1 h of exposure by
up-regulating the ileS more highly than mupirocin alone at 1 and 7 h. The MLH can release
mupirocin which is able to permeate the cell wall and bind to bacterial isoleucyl-tRNA
synthetase. Since the S. aureus ileS gene is a member of the T-box family [22], we can
predict that the expression is induced in response to limitations of isoleucine or inhibition
of isoleucyl-tRNA synthetase enzyme activity, since accumulation of uncharged tRNAIle
is expected to occur in this study. A greater than 10-fold induction of the read-through
ileS gene transcriptome in response to mupirocin caused inhibition of isoleucyl-tRNA
synthetase, as found in other work [23]. The charge of isoleucyl-tRNA with isoleucine is
blocked by the addition of mupirocin which leads to the gathering of uncharged isoleucyl-
tRNAs and reduction of the amino-acetylated isoleucyl-tRNA pool. Hence, the increase in
accumulation of uncharged tRNAs related to the destitution of amino acids for the bacterial
cell stimulated a stringent response, as previously observed by Hughes and Mellows,
and Geiger [19,24]. Most prokaryotic microorganisms exhibit the stringent response that
is a base global adaptation program [25]. The general shutdown of energy consuming
processes is necessary for survival under stringent control when MRSA growth is inhibited
by mupirocin. The molecular target of mupirocin has been widely observed to be isoleucyl-
tRNA synthetase. It is therefore possible that intracellular levels of leucine, isoleucine, and
valine slightly increased after mupirocin or MLH treatment compared to the control and
that this is caused by inhibition of biosynthesis pathways. Of particular interest, down-
regulation of genes of the GTPase enzymes, coded by the obgE gene, occurring within a cell,
was also actuated through the process of (p)ppGpp synthesis [19]. The transcription of all
rRNA genes started with guanosine nucleotides, the expression of which was influenced
by levels of intracellular guanosine triphosphate (GTP) [22]. With the initiation of their
primary promoters, at the beginning of transcription of rRNA in MRSA, they have been
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mapped and have verified the part of GTP, which can explain the impact of low GTP
concentrations on gene expression [23].

5. Conclusions

In conclusion, the MLH at MICs can inhibit isoleucyl-tRNA synthetase in MRSA as well
as mupirocin only as observed by CLSM. The MICs of mupirocin only and MLH were able
to trigger a stringent response in MRSA which led to the up- and down-regulation of genes
during the exponential phase of MRSA growth. Transcriptome profiles of MRSA showed
that global transcriptional alterations after treatment with mupirocin were similar to those
treated with MLH at MICs, including genes involved in the regulation of transcription,
translation, and replication pathways, though the fold changes in these genes decreased
more rapidly with MLH than with mupirocin after only 1 h of treatment. The inhibition of
mupirocin and MLH prevented incorporation of isoleucine into the protein chains, resulting
in inhibition of protein synthesis, whereas induction of GTP resulted in growth inhibition.
Finally, MLH can be successfully developed for use as an antibacterial skin formulation
and can replace mupirocin ointment. A future study will focus on an animal model for
studies of safety and efficacy.
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