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Abstract: COVID-19 pandemic has infected millions and led to a catastrophic loss of lives globally. It
has also significantly disrupted the movement of people, businesses, and industries. Additionally,
electric vehicle (EV) users have faced challenges in charging their vehicles in public charging locations
where there is a risk of COVID-19 exposure. However, a case study of EV charging behavior
and its impacts during the SARS-CoV-2 is not addressed in the existing literature. This paper
investigates the impacts of COVID-19 on EV charging behavior by analyzing the charging activity
during the pandemic using a dataset from a public charging facility in the USA. Data visualization
of charging behavior alongside significant timelines of the pandemic was utilized for analysis.
Moreover, a cluster analysis using k-means, hierarchical clustering, and Gaussian mixture models was
performed to identify common groups of charging behavior based on the vehicle arrival and departure
times. Although the number of vehicles using the charging station was reduced significantly due
to lockdown restrictions, the charging activity started to pick up again since May 2021 due to an
increase in vaccination and easing of public restrictions. However, the charging activity currently still
remains around half of the activity pre-pandemic. A noticeable decline in charging session length and
an increase in energy consumption can be observed as well. Clustering algorithms identified three
groups of charging behavior during the pandemic and their analysis and performance comparison
using internal validation measures were also presented.

Keywords: low emission vehicles; COVID-19; cluster analysis; charging infrastructure; data analytics;
mobility

1. Introduction

COVID-19, first detected in Wuhan, Hubei province in China, was officially declared
a pandemic by World Health Organization (WHO) on 11 March 2020 [1]. Lockdown
restrictions around the globe and social distancing protocols were introduced to minimize
the spread. As of 17 August 2021, COVID-19 led to over 200 million infections and
4.4 million deaths [2]. The introduction of vaccines has provided a potential pathway
to end the pandemic. However, the emergence of new variants has posed a different
challenge toward ending the pandemic [3]. More than 4.7 billion vaccine doses have been
administered by 17 August 2021 [2]. Nevertheless, the impacts of COVID-19 were severe
on various sectors and industries. This includes the negative impacts on the economy [4],
mental health [5], education, and tourism [6]. The pandemic also had an impact on the
energy sector. Although the overall electricity consumption was lower due to the lockdown
measures, there was an increase in household electricity consumption [7]. The energy sector
has become a point of focus due to the emerging climate change concerns.

According to the Intergovernmental Panel on Climate Change (IPCC), impacts of
climate change are evident and, in some cases, irreversible [8]. Energy consumption from
the transportation sector is significant, accounting for over 25% of world energy consump-
tion [9]. To provide a more sustainable alternative, research, development, and adoption
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of electric vehicles (EVs) are significantly increasing. Global sales of EVs increased by
about 140% in the first quarter of 2021 compared to the same period in 2020 [10]. This
significant growth amidst the pandemic is a promising sign for global EVs transition. EVs
on average require longer charging times compared to the refueling of traditional vehicles.
This has generally caused skepticism in the adoption of EVs. Fortunately, the improvement
in battery technology including faster charging methods and the development of charging
infrastructures around the globe [11] are potential solutions to EV charging. The emergence
of novel EV technologies including digital twin with connected Internet of Things and
bidirectional vehicle-to-grid features [12] promises further growth. However, it is still
important to understand the charging behavior in public charging spaces for effective
management of charging demand. According to the sustainable development scenario
which considers the climate goals, 230 million EVs are projected by 2030 representing
12% of road vehicles [10]. This massive increase could potentially lead to uncontrolled
charging as a result of overwhelming public charging demands in spaces such as shop-
ping malls and universities. Uncontrolled charging could lead to catastrophic impacts on
the power grid including overloading of the power equipment and an increase in power
losses [13]. Moreover, the availability of charging infrastructure plays a primary role in
EV market demand [14] and the mobility behavior of different EV fleets including logis-
tics and office differs greatly in terms of plug-in duration and energy consumption [15].
Therefore, understanding and quantifying public EV charging behavior is essential with
the growing charging demands. Data-driven approaches to modeling of charging behavior
present a more realistic and comprehensive representation than compared to simulation
or mathematical modeling that contains assumptions [16]. However, uncertain scenarios
such as a global pandemic impact the accuracy of any modeling. During these times, it
is possible that the charging load is unevenly distributed. For example, due to a large
number of people staying indoors for a longer period of time, it is likely that more people
would utilize residential charging. In addition to the potential overuse of household appli-
ances, this could lead to serious pressure on the electricity grid. As such, these scenarios
should be independently studied and integrated into various modeling. Decentralized
load frequency controls [17] and fault-tolerant mechanisms [18] could be utilized in these
situations. Although existing works have characterized EV charging behavior in various
public locations, the focus of this research is on the analysis of charging behavior during
the COVID-19 pandemic. Therefore, this research aims to analyze and quantify public
charging behavior during lockdown restrictions which have not been addressed by the
existing body of literature.

The proposed research work has several implications. First, the analysis presented can
be utilized by researchers, the public energy sector, and policymakers to make better deci-
sions during a future lockdown or similar public restrictive scenarios. This would enable
the energy sector to adjust the time of use electricity price to match the changing demand
without compromising on the user’s flexibility. Moreover, the key insights identified, such
as the increase in energy consumption despite a decrease in charging activity due to the
lockdowns, can help public charging providers to better manage their electricity demand.
This would perhaps lead to incentivizing users to charge their cars at home or locally over
a period of time to distribute the increasing energy demands. Finally, the clustering results
provide a high-level understanding of the different groups of charging behaviors during
the lockdown period. The clustering results indicate that despite the lockdown, users in
the same group follow a routine in their daily charging activities. Following are the key
contributions of this paper:

It analyzes the charging data from a public charging facility in the state of California,
USA during the COVID-19 pandemic. To the best of our knowledge, this is the first research
addressing the pandemic EV charging behavior.

It utilizes K-means, hierarchical, and Gaussian mixture models to find clusters of
charging behavior during the pandemic.
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It analyses and quantifies the clustering results and provides a discussion on the
future work.

The rest of the paper is organized as follows: Section 2 presents a concise review of the
existing works in the literature as well as a description of clustering algorithms. The dataset
description, preprocessing, and in-depth analysis of charging behavior during COVID-19
are presented in Section 3. In Section 4, the clustering results are presented and discussed.
Section 5 concludes the paper and outlines the future research directions.

2. Background
2.1. Related Works

Existing research works have utilized data-driven approaches and clustering solutions
for characterizing EV charging behavior. Shen et al. [19] utilized the K-means algorithm
to find clusters of charging behavior. Three clusters were obtained using features that
included connection time and departure time. Based on simulation results, two of the three
cluster groups were identified as stable and predictable users whereas the third cluster was
identified as unpredictable users. K-nearest neighbor (K-NN) algorithm was then used
to classify these two groups. Similarly, four clusters of charging behavior were identified
using hierarchical clustering in [20]. Most of the users belonged to the first cluster, where
the common charging behavior was to charge during the night and in the morning. The
users in the second cluster preferred to charge after work during the evening. The third
cluster users charged throughout the day and the fourth cluster users charged in the late
evening. Helmus et al. [21] discovered thirteen clusters of behavior using the Gaussian
mixture model. Seven of these clusters contained daytime charging sessions with varying
lengths of charging, and six of them contained overnight charging sessions. They also
utilized k-medoids clustering to find nine distinct clusters. Among these, three clusters
contained daytime chargers, three contained overnight chargers, and three contained non-
typical groups of chargers. In [22], the authors proposed a machine learning approach
to learn charging behavior by considering different time granularity. Two independent
models were first developed to predict the registered users and unregistered users, respec-
tively. The results were then combined to make the final predictions. Extreme gradient
boosting (XGBoost) performed the best and the prediction accuracy was the highest with a
15-min granularity. Similarly, [23] utilized a machine learning approach to predict charging
behavior with added weather, traffic, and events information to the historical charging
data. They reported the best performance with an ensemble model which outperformed
existing approaches. Barthel et al. [15] utilized real-world charging data from Germany
to explain temporal and power-specific flexibility characteristics of three vehicle fleets
namely pool vehicles of office employees, a public authority, and a logistics company. Their
analysis revealed a variability in charging behavior among the fleets with a higher charging
flexibility in the logistics group.

From the related works in the literature, only one research work has focused on EV
impacts during COVID-19. Wen et al. [24] studied the impacts of COVID-19 on the Chinese
EVs industry. Various economic trends in EV sales were discovered including a short-term
reduction of sales during COVID-19. They also identified an interruption of materials
import due to travel restrictions leading firms to domestic production of critical EV parts.
Although previous works in the literature have addressed EV charging behavior, they
are based on pre-pandemic conditions. Therefore, to better understand user charging
comportment during COVID-19 and pandemics or lockdown scenarios in general, it is
essential to analyze and model the data during the pandemic period.

2.2. Clustering Algorithms and Evaluation

To find clusters of common charging behavior, three popular clustering algorithms
were utilized, namely k-means, hierarchical, and gaussian mixture model (GMM). These
clustering algorithms are widely used in clustering applications related to charging behavior
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in the existing literature [16]. Furthermore, for the limited dataset size, more complex deep
learning-based clustering solutions were not appropriate.

In k-means clustering, the data points are initially assigned randomly to k-centroid
points, as described in Algorithm 1. K is defined as the number of clusters. The elbow
method is usually utilized to define the number of clusters [25]. The data points are
then iteratively assigned to new centroids based on their similarity using Equation (1).
Meanwhile, the centroids are computed and every iteration is updated based on Equation
(2). The process is repeated until the algorithm converges and the cluster labels do not
change any further.

Algorithm 1: K-Means Clustering

Initialize the cluster centroids µ1, µ2, . . . , µk ∈ Rn randomly
FOR Each cluster Cj
Repeat until convergence:

Cluster points based on distance from centroid:

c(i) := arg min
j
‖ x(i) − µi ‖

2 (1)

Compute and update new centroids for each cluster:

µi := ∑m
i=1 1{c(i)=j}x(i)

∑m
i=1 1{c(i)=j}

(2)

END

Hierarchical clustering used in the agglomerative variation results in the clustering
occurring in a bottom-up approach. Each item starts off as an individual cluster and is
then merged as one moves up the hierarchy [26]. Gaussian mixture model was also used to
cluster the common charging behavior. In this approach, probabilistic learning takes place
that can represent normally distributed subpopulations by considering multiple normal
distributions of the dataset [16].

Internal validation was utilized to quantify the performance of clustering since no
ground truth was available. Three internal validation metrics namely Silhouette index,
Davies-Bouldin index, and Calinski-Harabasz index were used. For a given cluster,
Xj(j = 1, . . . c), the silhouette index is defined in Equation (3) [27]:

s(i) =
(y(i)− z(i))

Max{y(i), z(i)} (3)

where y(i) is the average distance between the ith sample and all of the samples included in
Xj, and z(i) is the minimum average distance between the ith sample and all of the samples
clustered in Xk(k = 1, . . . c; k 6= j). The objective in the Davies–Bouldin index, defined in
Equation (4), is to identify sets of clusters that are closely packed but separated well from
other clusters [27].

Davies− Bouldin =
1
c

c

∑
i=1

Maxi 6=j

{
z(Xi) + z

(
Xj
)

d
(
ci, cj

) }
(4)

where c denotes the number of clusters, i,j are cluster labels. Samples in clusters i and j to
their respective cluster centroids are defined by z(Xi) z

(
Xj
)

and d
(
ci, cj

)
is the distance

between the centroids. Finally, the Calinski-Harabasz index is defined by Equation (5):

Calinski− Harabasz =
trace(SB)

trace(SI)
· ns − 1

ns − c
(5)

where c denotes the number of clusters, ns denotes the number of clustered samples, SB
defines the between-cluster scatter matrix, and SI defines the internal scatter matrix.
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3. Impacts of COVID-19 on EVs Charging
3.1. Dataset and Preprocessing

The adaptive charging network (ACN) dataset containing more than 30,000 charging
sessions [28] was used for this study. The dataset contains charging records from two
charging spaces in Caltech University campus, California. The Jet Propulsion Laboratory
(JPL) charging facility is only accessible to employees and therefore, only the data from
Caltech, which is open to the public, was used. The dataset contains logged charging events
as well as user-related attributes. The charging events include the arrival time, departure
time, and energy consumption. Meanwhile, the user-related data consist of users’ energy
requests and their estimated departure times. For this study, data containing the charging
events from 1 February 2020, until the end of July 2021 were considered. This enables the
analysis of trends in charging behavior throughout the pandemic. Since user-related fields
were not used in this study, the dataset did not contain any missing values. Overall, a total
of 3787 records were obtained from the Caltech site for the specified period of time. The
preprocessing steps involved converting the arrival and departure time values to a suitable
numeric format. This was achieved by dividing the minute by 60 and adding to the hour,
such that 10:17 was converted to 10:28, for example. Moreover, using the datetime method
from the pandas [29] library in python, the length of charging sessions was obtained by
subtracting the arrival time from the departure time.

3.2. Data Analysis

In terms of graphical analysis, the objective was to understand the ways in which the
charging behavior evolved throughout the pandemic. More specifically, the goal was to
find out the impacts on the charging activity and the overall charging behavior.

The charging activity in terms of the number of charging sessions is presented in
Figure 1. The figure is also annotated with the major COVID-19 events in the USA using
data from the American Journal of Managed Care [30] and other credible news sources.
A high charging activity can be observed at the beginning of February 2020, with about
210 charging sessions per week on average. This is followed by a dramatic decrease in
charging activity as the USA declared a public emergency on 3 February and WHO officially
declared COVID-19 a pandemic on 11 March. The charging activity continued to decline
further as California, where the ACN charging facility is located, became the first state to
announce lockdown measures. There was no charging activity between 3 August and 15
November 2020, as the pandemic worsened nationwide. Moreover, the state of California
faced a record number of cases and deaths during this period as well as rolling electricity
blackouts and wildfires [31], explaining the inactivity. This period also saw a nationwide
record of 100,000 cases per day. The charging activity resumed with the promising signs
of vaccine developments during November 2020. During December 2020, the activity
per week on average was about 50 sessions, as Pfizer and AstraZeneca vaccines received
emergency use authorization (EUA). During January and March 2021, there was a slight
decline due to increased deaths and reports of new variants. However, with the vaccination
rates increasing and the ease of restrictions, the charging activity picked up between May
and July 2021. However, the charging activity continues to be lower than pre-pandemic
with the current activity of about 110 sessions per week being almost half of the activity
just before the pandemic.

To get a better reflection of how the overall EV charging behavior evolved throughout
the pandemic, the trend in average arrival and departure time is plotted in Figure 2.
Furthermore, the average length of the charging session, i.e., the difference between the
arrival and departure time was plotted. It can be noticed that on average most of the
charging sessions began during the afternoon, between 12 p.m. and 2 p.m. The sessions
usually last for about 3 h and hence most of the departure time is between 3 p.m. and
5 p.m. However, looking at the session length trend, it is evident that as the pandemic
began and progressed through 2020 and 2021, the charging length on average became
shorter. This indicates that people spent less time outdoors charging their EVs. This
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trend is reestablished with the monthly average charging length diagram in Figure 3. The
charging length was almost 6 h during February and March 2020, when the pandemic was
officially declared. It then dropped to about 4 h on average between April and August 2020.
There was no charging activity in September and October, as indicated in Figure 1. After
the resumption of charging activities in November 2020, the average length continued to
remain below 3 h until June 2021. However, in July the average length increased to 3.4 h
indicating a shift toward pre-pandemic charging lengths.
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The decrease in charging length is conflicted with the increase in overall energy
consumption, as displayed in Figure 4. The average energy consumption was about
7.4 kWh during February and March 2020. It then increased to 11.8 kWh between April and
June 2020. The abnormally high average during August 2020 can be explained by only a
total of 5 charging sessions before August 3. After this point, there was no charging activity
until 15 November 2020. Therefore, the consumption during August can be ignored for
this analysis. From December 2020 until June 2021, the energy consumption continued to
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increase and reached about 13 kWh on average as the charging lengths became shorter.
However, as the charging length started to increase again from July 2021, a reduction in
energy consumption can be observed. The contrast in the two variables can be explained by
the fact that during shorter sessions, more energy is distributed at an increasing rate. It is
also likely that many vehicles utilizing the charging facility during this time also exploited
fast charging. This is because owners with slower charging vehicles would most likely
prefer to charge residentially due to concerns over staying outdoors for a longer period
of time.
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4. Clustering of Charging Behavior during COVID-19
4.1. Experimental Setup

As mentioned in Section 2, the number of clusters was required to be determined
before training. Figure 5 illustrates this method, where three clusters were decided based
on the sum of squared error (SSE). For all three algorithms, the number of clusters to be
found was set to three. Next, all charging sessions beginning March 2020 were selected to
find clusters of common behavior. To perform the clustering, the arrival and departure
time was selected to identify the charging behaviors. The clustering was implemented in
python using scikit-learn [32] library.
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4.2. Clustering Results

As mentioned earlier, three clusters were selected using the elbow method. Figure 6
presents the clusters obtained using k-means. The three clusters are almost equal in density
and well separated. Cluster one in purple represents the early chargers who usually start
between 5 a.m. and 10 a.m. and finish charging between 9 a.m. and 3 p.m. However, it also
includes a few users who arrive later during the day and finish charging the next morning.
The second cluster in red represents the group that arrives in the afternoon between 12 p.m.
and 4 p.m. and leaves between 3 p.m. and 8 p.m. Finally, cluster three in green contains
users who arrive after 3 p.m. and finish charging before midnight.
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In Figure 7, the three clusters using agglomerative clustering are presented. The results
are similar to k-means clustering in terms of the charging behavior of the three groups.
However, cluster two in red is less dense using this algorithm, and therefore, there is a
greater overlap between the afternoon chargers, and they belong to all three clusters.
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Finally, the three clusters using GMM are presented in Figure 8. The three clusters
using this algorithm are very different compared to the aforementioned approaches. In this
case, cluster one in purple contains most of the sessions where the arrival time is between
7 a.m. and 8 p.m. and the departure time is between 10 a.m. and midnight. The second
cluster in red contains shorter sessions where the charging session lasts for about 2 h. The
third and smallest cluster in green contains sessions scattered throughout the day.
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Table 1 summarizes the results using the three internal validation metrics. Silhouette
index is between −1 and +1 and higher scores indicate better clustering. Similarly, a higher
value for the Calinski-Harabasz index indicates good clustering. Conversely, the lowest
possible score for the Davies-Bouldin index is 0, and a lower score represents better cluster-
ing. The scores in Table 1 indicate that the Gaussian mixture model produced the worst
clustering. This is consistent with the cluster diagram in Figure 8. K-means performed the
best in terms of Silhouette and Calinski-Harabasz indices, whereas hierarchical clustering
performed the best in terms of the Davies-Bouldin index.
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Table 1. Internal validation scores.

Clustering/Metrics Silhouette Davies-Bouldin Calinski-Harabasz

K-means 0.41 0.85 2904
Hierarchical 0.38 0.74 2270

GMM 0.15 2.05 344

Overall, the results obtained in this work are consistent with the previous work in [19],
where three clusters of charging behaviors were identified. However, the authors did not
quantify their clustering results. The authors in [20] found four clusters using hierarchical
clustering. They also did not present an evaluation of their clustering results. In our work,
the quantified results are presented in Table 1. There are a few limitations in the clustering
results in the proposed work. First, the number of clusters determined using the elbow
method was used for all three algorithms. It is possible to experiment with more methods
to determine the optimal number of clusters. Finally, the charging sessions were clustered
based on the arrival and departure times. It is likely that using other parameters such
as vehicle type and energy consumption could potentially lead to the discovery of more
interesting clusters of behaviors.

5. Conclusions and Future Work

This paper presented an analysis of public EV charging behavior during the COVID-19
pandemic. Analysis indicates that the lockdown measures had an impact on the charging
activity during the pandemic. It was found that there were no charging sessions between
the beginning of August and until the middle of November 2020. Despite the recent growth
in charging activity due to increased testing, vaccination, and reduction in lockdown
restrictions, the charging activity is currently about half of pre-pandemic. Moreover, the
charging behavior evolved with shorter and high-energy sessions during the pandemic.
Furthermore, using clustering algorithms, three distinct groups of charging behaviors
were identified. The best clustering was obtained using K-means followed by hierarchical
clustering. The limitations of the clustering approach include the single method used for
determining the number of clusters as well as the reliance on only two parameters for
clustering. The proposed work contains several practical implications. The analysis of the
public charging behavior during the pandemic and lockdown situations, in general, helps
the energy sector and policymakers to better manage the charging demand. Based on the
identified trends and patterns, the charging electricity price of use could also be adjusted to
control some of the charging load.

For future work, an analysis of residential charging data should be performed. It is
likely to show a dramatic increase in charging activities due to the lockdown measures
forcing people to charge their vehicles residentially. For optimal decision-making on EV
charging demand on a state level, it is essential to combine both residential and non-
residential charging activities over a period of time. Moreover, data from other charging
facilities in the USA and across the globe should be used to further compare and validate
the findings in this work. Although beneficial, the proposed research is limited by the data
source which only characterizes a single location. Given that the pandemic is still ongoing
with new variants being identified, a forecast for the year 2022 based on the current data is
required. The forecasting model should incorporate statistical, time series, and machine
learning approaches. Finally, deep learning and neural approaches to clustering can be
experimented with to provide a further comparison. Deep learning-based methods are
known to usually provide more accurate solutions with larger datasets and therefore must
be explored in future research.
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