. AppliedMath

Article

Berry—-Esseen Bounds of the Quasi Maximum Likelihood
Estimators for the Discretely Observed Diffusions

Jaya P. N. Bishwal

check for
updates

Citation: Bishwal, J.P.N.
Berry-Esseen Bounds of the Quasi
Maximum Likelihood Estimators for
the Discretely Observed Diffusions.
AppliedMath 2022, 2, 39-53. https://
doi.org/10.3390/ appliedmath2010003

Academic Editor: Tommi Sottinen

Received: 2 December 2021
Accepted: 7 January 2022
Published: 8 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematics and Statistics, University of North Carolina at Charlotte, 376 Fretwell Bldg.,
9201 University City Blvd., Charlotte, NC 28223-0001, USA; J.Bishwal@uncc.edu

Abstract: For stationary ergodic diffusions satisfying nonlinear homogeneous It6 stochastic differen-
tial equations, this paper obtains the Berry—Esseen bounds on the rates of convergence to normality of
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1. Introduction and Preliminaries

Parameter estimation in diffusion processes based on discrete observations is the
recent trend of investigation in financial econometrics and mathematical biology since the
data available in finance and biology are high-frequency discrete, though the model is
continuous. For a treatise on this subject, see Bishwal (2008, 2021) [1,2].

Consider the It6 stochastic differential equation

Xy = f(@,Xt)df+th,f20 (1)
Xo = X°

where {W;, t > 0} is a one-dimensional standard Wiener process, 6 € ©, © is a compact

subset of R, f is a known real valued function defined on ® x R, the unknown parameter 6

is to be estimated on the basis of observation of the process {X;, t > 0}. Let 6 be the true

value of the parameter that is in the interior of ©. We assume that the process {X;,t > 0} is

observedat0 =ty <t <...<t, =TwithAt; ==t —t; 1 = % =hand T = dn'/? for

some fixed real number d > 0. We estimate 6 from the observations {X;,, Xy, ..., X4, }.
The conditional least squares estimator (CLSE) of 6 is defined as

6,7 = argmin Qu,r(6)
noXy — X
where Q,7(0) = 2 [ f

i=1

— £(6,X;, )h]? @
At; ’

tiq

This estimator was first studied by Dorogovcev (1976) [3], who obtained its weak
consistency under some regularity conditions as T — o0 and I — 0. Kasonga (1988) [4]
obtained the strong consistency of the CLSE under some regularity conditions as n — oo
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assuming that T = dn'/? for some fixed real number d > 0. Prakasa Rao (1983) [5] obtained
asymptotic normality of the CLSE as T — oo and nl—T/z — 0.

Florens-Zmirou (1989) [6] studied the minimum contrast estimator, based on a Euler-
Maruyama-type first-order approximate discrete time scheme of the SDE (1), which is
given by

Zti - Zti,l = f(er Ztifl)(tl' - ti—l) + Wf,‘ - Wt‘ i 2 1/ ZO = XO' (3)

i—17

The log-likelihood function of {Z;,,0 < i < n} is given by

t— 2Ly — f(G, Zti—1)h}2
At; '

Lag—cy 2 )
i=1

where C is a constant independent of 6. A contrast for the estimation of 6 is derived from
the above log-likelihood by substituting {Z;,0 < i < n} with {X;,,0 < i < n}. The
resulting contrast is

t; — Xti,l - f(a’ Xti*l)h]z

At;

Hn,T =C Zn: [X (5)
i=1

and the resulting minimum contrast estimator, called the Euler-Maruyama estimator, is
given by

0,7 := inH,, (0
n,T 1= argmin w,1(6)

Florens-Zmirou (1989) [6] showed the L-consistency of the estimator as T — oo and
% — 0 and asymptotic normality as T — co and nZ—T/B — 0.

Notice that the contrast H, r would be the log-likelihood of (X;,0 < i < n) if the
transition probability was N (f(6, x)h, h)). This led Kessler (1997) [7] to consider Gaussian
approximation of the transition density. The most natural one is achieved through choosing
its mean and variance to be the mean and variance of the transition density. Thus, the
transition density is approximated by N (E(Xy,|Xy, ,), h)), which produces the contrast

2
Xy — E(X, | Xt
Kn,T =C Z [ £ (Att1| tz—l)} . (6)
i=1 !

Since the transition density is unknown, in general, there is no closed-form expression
for E(X},| X}, ). Using the stochastic Taylor formula obtained in Florens-Zmirou (1989) [6],
he obtained a closed-form expression of E(X;,|X;, ;). The contrast H,, 7 is an example of
such an approximation when E(Xy, | Xy, |) =~ X, , +hf (0, Xy, ;).

The resulting minimum contrast estimator, which is also the quasi-maximum likeli-
hood estimator (QMLE), is given by

O,7 = inK,, (0
n,T al‘glggg n,T( )

Kessler (1997) [7] showed the L;-consistency of the estimator as T — oo and % —0
and asymptotic normality as T — oo and WTI)/F — 0 for an arbitrary integer p.

Denote
V(Br th‘q) = E<Xfi|Xfi71)r y(@,x) = E(Xfi|Xti71 = x) (7)

which is the mean function of the transition probability distribution. Hence, the contrast is
given by

(X — (0, X))
K = ey PO X)L ®
i=1 1
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If continuous observation of {X;} on the interval [0, T] were available, then the likeli-
hood function of 8 would be

Lr(6) = exp{/OTf(Q,Xt)dXt —i/Osz(e,Xt)dt} )

(see Liptser and Shiryayev (1977) [8]). Since we have discrete data, we have to approximate
the likelihood to obtain the MLE. Taking Itd-type approximation of the stochastic integral
and rectangle rule approximation of the ordinary integral in (9), we obtain the approximate
likelihood function

N =

n n
Lor(6):= exp{ Y F0,X (X, — X)) — 5 Y F2(0,X ) } (10)
i=1 i=1
The It6 approximate maximum likelihood estimate (IAMLE) based on L, r is de-
fined as
0,1 = L.r(6).
n,T arg r&% n,T( )

Weak consistency and asymptotic normality of this estimator were obtained by Yoshida
(1992) [9]as T — coand L — 0.

Note that the CLSE, the Euler-Maruyama estimator and the IAMLE are the same
estimator (see Shoji (1997) [10]). For the Ornstein—Uhlenbeck process, Bishwal and Bose
(2001) [11] studied the rates of weak convergence of approximate maximum likelihood
estimators, which are of conditional least squares type. For the Ornstein-Uhlenbeck process,
Bishwal (2010) [12] studied the uniform rate of weak convergence for the minimum contrast
estimator, which has a close connection to the Stratonovich—-Milstein scheme. Bishwal
(2009) [13] studied Berry—Esseen inequalities for conditional least squares estimator in
discretely observed nonlinear diffusions. Bishwal (2009) [14] studied the Stratonovich-based
approximate M-estimator of discretely sampled nonlinear diffusions. Bishwal (2011) [15]
studied Milstein approximation of the posterior density of diffusions. Bishwal (2010) [16]
studied conditional least squares estimation in nonlinear diffusion processes based on
Poisson sampling. Bishwal (2011) [17] obtained some new estimators of integrated volatility
using the stochastic Taylor-type schemes, which could be useful for option pricing in
stochastic volatility models; see also Bishwal (2021) [2].

Prime denotes the derivative with respect to 6, dot denotes the derivative with respect
to x and \/ denotes the max symbol throughout the paper. In order to obtain a better
estimator in terms of lowering variance in Monte Carlo simulation, which may have a faster
rate of convergence, first, we use the algorithm proposed in Bishwal (2008) [1]. Note that the
Itd integral and the Fisk-Stratonovich (FS, henceforth; Fisk, while introducing the concept
of quasimartingale, had the trapezoidal approximation and Stratonovich had the midpoint
approximation, converging to the same mean square limit) integral are connected by

/(;Tf(e, X)dX; — /OTf(G, X;) 0 dX; — %/{;Tf'(e, X;)dt, (11)

where o is the It6’s circle for the FS integral. We transform the It6 integral (the limit of the
rectangular approximation to preserve the martingale property) in (9) to the FS integral
and apply FS-type trapezoidal approximation of the stochastic integral and rectangular
rule-type approximation of the Lebesgue integrals and obtain the approximate likelihood

Ly, 7(6) —exp{ L6, X2, ) + FO X)) (X — Xy
TE 0. ZZ 0%, | } (12)
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The Fisk-Stratonovich approximate maximum likelihood estimator (FSAMLE) based
on L, 1 is defined as
0,1 := argmaxL, 7(0).
0e®

Weak consistency as T — o0 and L — 0 and asymptotic normality as T — oo and
nz% — 0 of the FSAMLE were shown in Bishwal (2008) [1]. Berry—Esseen bounds for the
IAMLE and the FSAMLE for the Ornstein—-Uhlenbeck processes were obtained in Bishwal
and Bose (2001) [11].

We shall use the following notations: AX; = Xy, — X, ,, AW; = Wy, — W, ,Cisa
generic constant independent of /1, n and other variables (1t may depend on 0). Throughout
the paper, f denotes the derivative with respect to x and f’ denotes the derivative with
respect to 6 of the function f (6, x). Suppose that 6y denotes the true value of the parameter
and 6y € ©. We assume the following conditions:

Assumption 1.
(A1) [£(6,%)] < a(6) (1 + |x])
£(60,%) = £(8,y)] < a(6)|x — yl.
(A2) [£(6,%) — f(9,y)] < b(x)[0 — ¢l forall 0, € ©,x,y € R
where supy g |a(0)| = a < o0, E|b(X°)|" < 0o for any integer r.
(A3) The diffusion process X is stationary and ergodic with invariant measure v, i.e., for any g
with E[g(+)] < oo,

n

% Y 8(Xy) = Ev[g(Xo)] as.as T — coand h — 0.
i=1

(A4) sup,-, E|X;|7 < oo forall g > 0.

(A5) E|£(0,X°) — f(60, X")|> = 0iff 6 = 6.

(A6) f is continuously differentiable function in x up to order p for all 6.

(A7) f(-,x) and all its derivatives are three times continuously differentiable with respect to
0 for all x € R. Moreover, these derivatives up to third order with respect to 0 are of polynomial
growth in x uniformly in 0.

The Fisher information is given by

(o)

0<1(6) := / (F(8,x))2dv(x) < oo

and for any & > 0, or any compact © C ©,

inf sup Eeo|f (6, Xo0) — f'(60, Xo)[> > 0.
00€O |9—gy|>0

(A8) The Malliavin covariance of the process is nondegenerate.

The Malliavin covariance matrix of a smooth random variable S is defined as yr = fOT D;S[D;S]
*dt, where Dy is the Malliavin derivative. The Malliavin covariance is nondegenerate if det(yT)
is almost surely positive and, for any m > 1, one has ||1/det(yr)| pm < oo. This, associated with
the functional w — X (t,w), is given by 0 < 0?(t) = Y7 [ f2(8, Xs)Z2ds < oo where Y; and Zy,
respectively, satisfy

dY; = f(6, Xp)Ysdt + YidWi, Yo =1, dZy = —f(0, Xy) Zsdt — ZidW;, Zo = 1.

In the case of independent observations, in order to prove the validity of asymptotic
expansion, one usually needs a certain regularity condition for the underlying distribution,
such as the Cramér condition; see Bhattacharya and Ranga Rao (1976) [18]. This type
of condition then ensures the regularity of the distribution and hence the smoothness
assumption of the functional under the expectation whose martingale expansion is desired
can be removed. This type of condition for dependent observations leads to the regularity of
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the distribution of a functional with nondegenerate Malliavin covariance, which is known
in Malliavin calculus; see Ikeda and Watanabe (1989) [19] and Nualart (1995) [20]. Malliavin
covariance is connected to the Hormander condition, which is a sufficient condition for a
second-order differential operator to be hypoelliptic; see Bally (1991) [21]. For operators
with analytic coefficients, this condition turns out to be also necessary, but this is not true
for general smooth coefficients.

More precisely, let X be a differentiable R-valued Wiener functional defined on a
Wiener space. Assume that there exists a functional i such that

sup |uE[e"XX*yp] < 00, j, ke Z¥.
ueR

Thus, it is a regularity condition of the characteristic function, which is a consequence
of the nondegeneracy of the Malliavin covariance in the case of Wiener functionals. The
functional i, which is a random variable satisfying 0 < 1 < 1, is a truncation functional
extracting from the Wiener space, the portion on which the distribution is regular. If X is
almost regular, one may take ¢ nearly equal to one. Uniform degeneracy of the Malliavin
covariance of the functional T—1/2 fOT f (6o, X¢)dW; can be shown under (A8); see Yoshida
(1997) [22].

Bishwal (2009) [13] obtained the rate of convergence to normality of the It6 AMLE and
the Fisk-Stratonovich AMLE of the order O ( T-1/2y %2) and O ( T-1/2y Z—i) , respectively,
under the regularity conditions given above with q > 16 for (A4). We obtain the rate of
convergence to normality, i.e., Berry—Esseen bound of the order O (T‘l/ 2y %:1) for the
QMLE 6, 7 for arbitrary integer p.

We need the following lemma from Michel and Pfanzagl (1971) [23] to prove our
main results.

Lemma 1. Let &, and i be any three random variables on a probability space (Q), F, P) with
P(n > 0) = 1. Then, for any € > 0, we have

(a) SU£\P{§+C <xp—@(x)| < SHEIP{C < x}—@(x)|+P(IZ] > €) +e,

(b) sup [P{S < x} — B(x)] < sup [P{Z < x} — B(x)| + P{ly 1] > ¢} +e.
xeR Ui xeR
2. Main Results

We start with some preliminary lemmas. Let L denote the generator of the diffusion
process, ¢ € C2(R)

Lg(x) 1= £(6,0)3(x) + 28(x).

The k-th iterate of L is denoted as L*. Its domain is C2*(R). We set L = I.
Stochastic Taylor formula (Kloeden and Platen (1992) [24]): For a p + 1 times continu-
ously differentiable function ¢ : R — R, we have fort € [0,T]and p = 1,2,3, ...

4 tk ¢ s
g(X) = g(Xo) + Y ELkg(XO)—i-/O /0 LPg( Xy, )dsy .. dsp .
k=1""

Lemma 2. With f(x) = x, the stochastic Taylor expansion of (6, x) is given by

4 hk
;t((), Xti—l) = E(Xti|Xti—l) = Z Fka(Xfifl) + R(G/ thrl/Xfifl)
k=0 "
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where R denotes a function for which there exists a constant C such that
R(6, WP, Xy, ) < HPHC(1+ Xy, |)E.

Proof. Applying the stochastic Taylor formula of Florens-Zmirou (1989, Lemma 1) [6], one
obtains the result. See also Kloeden and Platen (1992) [24].

Consider the following special cases:

Euler Scheme: For p =1,

1(6,x) = LOf(x) + hL f(x) + R(8, K2, x).

Milstein Scheme: For p = 2,

(0, %) = LOF(x) + hL'f(x) + B L2f (x) + R(6, % ).

Simpson Scheme: For p = 4,

u(0,x) = LOf (x) + hLf (x) + B L2F(x) + 5L f(x) + G LAF (x) + R(6,15, x).

Boole Scheme: For p = 6,

p,x) = LOf(x) + hLf(x) + BL2F(x) + L3 (x) + G () + G LOf(0+
BLSF(x) + R(6,H7,x). O

Remark 1. Forp =1, u(0,Xy, ) = Xt , +hf(0,Xy, ). This produces the CLSE. This estimator
has been very well studied in the literature (see Shoji (1997) [10]).

Remark 2. Note that the Milstein scheme is equivalent to Stratonovich approximation of the
stochastic integral after converting the It0 integral to the Stratonovich integral.

Lemma 3. Forall p > 2, we have
n

Z[ﬂ(erxtiq) - Xti / f 9 Xt)dt

i=1

Esup
0cO

2 TP+1
< c( )
p—1

T4
<C

Proof. First, we show that, for p = 2,

Esup
0e®

2
ZfGthlAt—/ f(6, X¢)dt

1=

We emphasize that the Itd formula is a stochastic Taylor formula of order 2. By the Ito
formula, we have

90/ Xt) — f(0o, Xt,_,)

901 Xu qu + 3 / f 90/ Xu)d

I |
\ \

1.
£ (60, X )dW, + / £(80,Xu) £ (B0, Xu) + 5 £ (60, Xu)|du
/ GOIXM dwu +/ GO/Xu>d

where
F(6,X,) = (B0, X,) £ (60, X,) + 37160, X,).
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We employ Taylor expansion in the local neighborhood of 6. Let 6 = 6y + T~1/2u, u € R.
Then, we have

2
n T
Esup|)_ f(6, X , ‘—/ f(8,X)dt
0cO|i=1
nool 2
= Esup 2/ 9 Xt (9, Xt,-,l)}dt
0@ |i=17ti-
n £ 2
= Esup Z/ [f(@o +T V2, X;) — f(60+ T 20, Xt,;l)jldt
ueR|j=1"v"%
= Esup Z/ f(00, Xt) — f(00, Xy,,)]dt
ueR|;

2
T 1/2u2/ "0,X:) — f1(8,X;, )] dt

2

f (60, X¢) — f(60, Xy;_,)]dt

2
+2Esup|T “%Z/ '0,X:) — f(6, Xy, ,)]dt
ueR
n t; 2
= 2E}] /t [ (60, X0) — f (00, X1, )]dt| +2Gy
i=1"7"%-1
noo t t 2
- E|} /t u F(80, X)W, + /t f’(Go,Xt[l)F(GO,Xu)du}dt 412G,
i=1 /i1 Lt i-1
< X ) AW, dt
2
+2E / / f 90,Xt1 1) (QO,Xu)dudt +2Gq
i=
= 2(h +I)+2G1
where
nooeh et 2
A ::EZ/ / F(80, Xu)dW,dt|
i=17ti-1 i
nooetiot 2
o= E|}] /t /t (80, X, ,) F(8o, Xo)dudt| ,
i=1 7 ti-1 i
2
Gi =: Esup|T 1%2/ '0,X) — f(8,X, ,)]dt
ueR
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and |6 — 6y| < |6 — 6p|. Further

2
n T
Esup Z 9 th ]) th 1 i’i—/ f(G,Xt)dt
0e®|i=1 0
n T 2
< 2Esupz (6, X, )AL — / £(6,Xp)dt
0eO|i= 0
n n 2
+2E sup 2 9 Xt Xf;‘q]Ati — Zf(g, Xti,l)At
0€® |i= i=1
By Lemma 2, we have
W 41
u(®, X, ) — X, , —hf(6,Xs,_,) = Z L (60, X, )+ RO, X, ).
k=2
Further
n
Z[.”(Q/Xti Xf 1 / f 9 Xt
i=1
n T
= DOy ) XAk~ 110X )+ 0. X ot [0
i=1 i=1
4 Wk . " T
_ Z L F6,X, ) + RO X, )| + 1 F6, X )8t [ £, Xt
i=1 i=1
Hence

n

2
T
Z 0, X, XtH]Ati—/O £(0,X;)dt

i=

Esup
ISC)

" 2

»

< 4(Ji+ J2) + 2Esup

< Z LfGXt )+ RO,RPL X )
€0 |i

Observe that, with B;; := ft £/ (60, X, 1)f(90,Xu)qu, 1 <i < n,wehave

L= flE(/t Bltdt) +# 1 (/ Bltdt></ B]tdt>

ki ]

n

Y (ti—tia /i E(B},)dt
i—1 tio ’
he last term being zero due to the orthogonality of the integrals)

Bt—seo [ { ] Elroo o i

i=1
n

IN

IN

—~

IN
@)

/ " (t—t1)dt (by (A4)and (A3))
1

i

T
n
T

M:

IN

C (tl — i 1)

n:
l

T3
Cy.

1
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On the other hand, with A;; := ft 1 f' (60, Xt,_,)F(6o, Xu)du,1 < i < n, we have

n

2
t; t

D /t /t f'(80, Xt,_,) (60, Xu)dudt
i=1"74-1"t-1

2 E

n

2
Z / At

_ ( / Altdt> + ( / A,tdt) ( / A]tdt>
= ti ]7&1 1 tig /
) , ) ) 1/2
( / Alztdt) Ly E( / ’ Ai,tdt> E( / ’ Aj,tdt>
[ ji=1 tiq tiq

(it 1)/” E(A2)dt

1 ti1

= E

IN
.M=

I
—

IN
M:

1/2
n L t
+ ¥ {(tf ~ti1) [ E(AZdt (- t0) [ E(A]%f)dt} .
jAi=1 tiq ti1
However, E(A?,) < C(t — t;_1)? using (A4) and (A3). On substitution, the last term is
dominated by
CZ (ti—ti1)*+C Z = tii1)?(t — ti1)?
jFi=1
T4 n(n 1)T4 T4
Thus
T4
it <Co3.
By the same method, we have
T3
n

Hence

n T 2
Esup|2f(9, X;, )b —/0 £(6,Xp)dt

0€0|i=1

<2(Ji+2) +2G

T4
< C
Thus, the proof for p = 2 is complete. Next, we consider the general case p > 3.
Denote )
n
J3 := Esup le —LKF(0, Xy, ) + R(6,hPHL, X, )
0€0O |;
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We have
" 2
Esup|Y [u(6, X, ) — X, ,]At; —/ £(6, Xp)dt
e |i=1
n n 2
< 2Esup|) [u(0,X:, ) — Xp, )AL — Y £(6, Xt.fl)Ati
0e®|i=1 i=1
2Esup|) F(6, X, ,)At; —/ £(6,X1) dt
€@ |i=1

< 23441+ J2) +2Gy.
Observe that, by Lemma 2, we have

Tp+1

J3 <C——.

np

Thus, by combining the bounds for [y, >, J3 and Gy, we have

2
p+1

n

Esup| Y [1(6,Xs._,) — X, ] / £(6,X,)dt
€O |i=1

O

The following lemma is from Bishwal (2008) [1].

Lemma 4. Let .

. T 2
I := TI(Q())/O f (GO,Xt)dt.

Then, under the conditions (A1)—(AS),

sup E[I7(8) —1]> < CT L.
0c®

The following lemma follows from Theorem 7 in Yoshida (1997) [22].

Lemma 5. Let

MT = /Tf(Go,Xt)th.

1
\V TI(Q()) 0

Then, under the conditions (A1)—(A8),

sup|Pg, {Mr < x} — ®(x)| < CT /2
xeR

Our main result is the following theorem.

Theorem 1. Under the conditions (A1)-(A8), for any p > 1, we have
Tp+1
-1/2
o) (T V—; > :

~ ~ ~ ~

l,7(0) :=1logL, 1(0), and I, 7(0) :=log L, 7(0).

sup
xeR

Pe{ TI(6) (67 — 0) < } ()| =

Proof. We start with p =1 and p = 2. Let
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By Taylor expansion, we have

~ ~

w1 (On1) =1, 7(60) + (0,7 — 00)1)) 7 (6,1)

where ’én,T — 9| < ’@n,T — 90|. Since IA;I,T((;,I,T) = 0, hence we have

1 ' 1 . , ‘
TI(QO) ln,T(QO) \/m Zi:lf (90, Xti—l)AWl MH’T

TI(G())(én,T - 90) = — = = Sl = =
TI(lGO) I 7 (0n,1) % 1 [ (O, X )AL Va1
Note that
- // 1 g 1(Q 2
V n T, Xt, 1 At - TI(QO) Z f (en,T/ Xti,l) Atl‘

However, E(IT — 1)2 < CT~! from Lemma 4 (see also Pardoux and Veretennikov
(2001) [25] and Yoshida (2011) [26]). It can be shown that E(V;, 7 — I)? < C% (see Altmeyer
and Chorowski (2018) [27]). Hence

E(Vyr — 12 = E[(Vir — Ir) + (Ir — 1)] 1\/

Further, by Lemma 1 (b), we have

sup Pg{ TI(0)(f, 7 —0) < x} — ®(x)
xeR
= sup Pg{ M, < x} — P(x)
xeR Vi,
= sup|P9{Mn,T < X} — q>(x)| + P9{|Vn,T — 1| > €} +e€
xeR

IN

T
T-1/2 +e2C(T
vE y
since, by Lemmas 1 (a) and 5, we have

sup|Po{ My, < x} — ®(x)]

xeR

< sup|P9{MT < X} - ¢(x)| + P6{|MH,T - MT| > 6} +e€
xeR

< CT V24 e 2E|M,r — Mr|* +¢

-1/2 T2 -2 T
< C(T \/7)+€ C;—Fe.

Choosing € = T~1/2, we have the result.
On the other hand, by Taylor expansion, we have

Ly (0n,7) = I, 1(60) + (8,7 — 60) 1, 1(6n,

Qbu
\_/
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where

On1 — 6‘ < |67 — 6o|- Since I, +(6,,,7) = 0, hence we have

T1(60) (0,7 — 60)

T
= _{1{; i[f/(eo, Xti—l) +f/(90’ Xti)]AWi

i=1
b LU0 X )+ 60 3)) [ 6o o)
ifl(go’ Xti—l) —h i f(GO/ XtF] )f/(QO/ Xt,-,] ) } }

i=1 i=1

h

2
X ! lfw@Tm)+ﬂ@Tm)mW
TI(Q 2 n,lrs i—1 n,lrs i—1 1

i=1

3 LU Gur X ) + £ G X)L [ G, Xt

i=1 i1

n

hi ., = = =
_E Z f”(gi’l,Tl Xt,‘,l) - h Z f(gn,T/ Xti*l )f”(en,T/ Xt,‘,l)

i=1 i=1

-1
hZf nTrXt, 1 }}
= {Rn,T}{Sn,T} 1'

LetlimS, 7 = StinLyas T — coand % — 0. Similar to Lemma 4, it can be shown that
E(St —1)? < CT~! (see also Pardoux and Veretennikov (2001) [25] and Yoshida (2011) [26]).
It can be shown that E[(S,, 7 — S1)? < C% (see Altmeyer and Chorowski (2018) [27]). Hence

E(Syr 172 = E[(Syr— Sr) + (St~ D < C(T7H/ 1)

Thus, by Lemma 1 (b), we have

pe{\/f(eﬂ_ <x} ®(x)

Pg{ I;”’T < x} — ®(x)

sup
xeR

= sup

xeR n,T
— sup|P{Ry,r < ¥} — O(x)| + B{Sur — 1] > €} +e
xeR

IN

rey Dy vezeay T
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since, by Lemmas 1 (a) and 5, we have

sup|Py{Ry,1 < x} — ®(x)|

xeR

< sup|P9{MT < x} — CI)(X)| + P9{|Rn,T — MT| > €} +e€
xeR

< CTV24 € 2E|R,7 — Mr|* + ¢

T3
< CcT V24 e*ZC? + €.

Choosing € = T~1/2, we have the result.
Now, we study the general case for arbitrary p. By Taylor expansion, we have

K 1(6n,7) = K}, £(60) + (6,7 — 60) K7 (8,7)

where

5” — 9‘ < 10,7 — 6o|. Since K}, 7(6,,,7) = 0, hence we have

T1(80) (6.1 — 60) = — ﬁ(f)o)K:z,TE(QO) _ ﬁx —1m (EQO,Xt AW, _ Nyr
WK;//{,T(GH,T) TI({) ) Zl 1 m' ( n,Tr Xti,l)Ati un,T
Note that
1 1 = 1 n =
un,T - TI(GO) lzzlm (911 TrXfl 1)Atl - TI(QO) 1221 (971 TrXf ) At i-

Let limU,r = Urin Ly as T — oo and % — 0. Similar to Lemma 4, it can be
shown that E(Ur — 1) < CT~! (see also Pardoux and Veretennikov (2001) [25] and
Yoshida (2011) [26]). It can be shown that E (U, 7 — Ur)? < C% (see Altmeyer and Chorowski
(2018) [27]). Hence

E(U, 1 —1)2 = E[(Uy1 — Ur) + (Up — 1) \/

Further, by Lemma 1 (b), we have

sup Pg{ TI(0)(6,1—0) < x} — ®(x)
xeR
= sup Pg{ N1 < x} — P(x)
xeR Uy, T
= sup|P9{Nn/T < x} — CI)(X)‘ + P9{|Un,T — 1| > 6} +e€
xeR

IN

TP+1 T
T2\ ——)+e2C(T'\/ =) +e
\/ 7 )+e °C( \/ n) +e€
since, by Lemmas 1 (a) and 5, we have

sup|Py{Ny,r < x} — @(x)|

xeR

< sup\Pg{MT < x} — @(XH +P9{’Nn,T — MT‘ > 6} +e€
xeR

< CT Y24 e 2E|N,r — Mr|* +¢

Tp+l
< CT~ 1/2+e*2C—+e

Choosing € = T~1/2, we have the result. [
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Remark 3. With p = 1, for the Euler scheme, which produces the conditional least squares
estimator, one obtains the rate O (T‘l/ 2 \V T?Z) . With p = 2, for the Milstein scheme, one obtains the

rate O (T’l/2 V Z—s) With p = 4, for the Simpson scheme, one obtains the rate O (T’l/2 V Z—i)

With p = 6, for the Boole scheme, one obtains the rate O (T’l/ 2y Z;—Z) Thus, the higher the p, the

sharper the bound. Thus, the Itd/Euler scheme gives the first-order QMLE, the Milstein/Stratonovich
scheme produces the second-order QMLE, the Simpson scheme produces the fourth-order QMLE
and the Boole scheme produces the sixth-order QMLE. See Bishwal (2011) [28] for a connection of
this area to the stochastic moment problem and hedging of generalized Black—Scholes options.

3. Example
Consider the stochastic differential equation
X
X, = 0—=L—dt+dW, t>0
1+ X?
Xo = Xxo

The solution to the above SDE is called the hyperbolic diffusion process because it has
a hyperbolic stationary distribution when 6§ < 0. The process has nonlinear drift and the
process is stationary and ergodic, which distinguishes this from a linear drift case, such as
the Ornstein—Uhlenbeck process and the Cox-Ingersoll-Ross process, which have linear
drift. This model verifies assumption (A3). In fact, the stationary density is proportional to

exp(04/1 + X?). Itis not possible to calculate the conditional expectation for the hyperbolic
diffusion process and hence one needs a higher-order Taylor expansion approach.

Remark 4 (Concluding Remark). It would be interesting to extend the results of the paper to
diffusions with jumps using the strong stochastic Taylor expansion with jumps results in Chapter 6
of Kloeden and Bruti-Liberati (2010) [29].
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