
����������
�������

Citation: Gupta, A.; Aberkane, I.J.;

Ghosh, S.; Abold, A.; Rahn, A.;

Sultanow, E. Rotating Binaries.

AppliedMath 2022, 2, 104–117.

https://doi.org/10.3390/

appliedmath2010005

Received: 26 October 2021

Accepted: 10 January 2022

Published: 3 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Rotating Binaries
Anant Gupta 1 , Idriss J. Aberkane 2 , Sourangshu Ghosh 3 , Adrian Abold 4 , Alexander Rahn 5

and Eldar Sultanow 6,7,*

1 Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA; agupta886@gatech.edu
2 Unesco-Unitwin Complex Systems Digital Campus, ECCE e-Lab, CEDEX, 67081 Strasbourg, France;

idriss.aberkane@polytechnique.edu
3 Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;

sourangshu@iitkgp.ac.in
4 Department of EEI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Lange Gasse 20,

90403 Nuremberg, Germany; adrian.abold@fau.de
5 Faculty of Information Systems and Applied Computer Sciences (WIAI), University of Bamberg,

Kapuzinerstraße 16, 96047 Bamberg, Germany; Alexander.Rahn@stud.uni-bamberg.de
6 Chair of Business Informatics, Processes and Systems, Potsdam University, Karl-Marx Straße 67,

14482 Potsdam, Germany
7 Capgemini, Bahnhofstraße 30, 90402 Nuremberg, Germany
* Correspondence: eldar.sultanow@wi.uni-potsdam.de or eldar.sultanow@capgemini.com;

Tel.: +49-1514-025-1786

Abstract: This paper investigates the behavior of rotating binaries. A rotation by r digits to the
left of a binary number B exhibits in particular cases the divisibility l | N1(B) · r + 1, where l is the
bit-length of B and N1(B) is the Hamming weight of B, that is the number of ones in B. The integer r
is called the left-rotational distance. We investigate the connection between this rotational distance, the
length, and the Hamming weight of binary numbers. Moreover, we follow the question under which
circumstances the above-mentioned divisibility is true. We have found out and will demonstrate that
this divisibility occurs for kn + c cycles.

Keywords: binary rotation; circular left shift; collatz cycle; randomness

1. Introduction

With this manuscript, we pursue the goal of exploring the connection between rota-
tions of binary vectors and 3n + c cycles. Theorem 3 and its generalization in Section 9
mainly contribute to this exploration, since they narrow down the conditions for the sought
divisibilities and for the cycle existences. The starting point of our research is a divisibility
feature of rotated binary numbers, which has been discovered by Darrell Cox [1] and taken
further, analyzed, and visualized for numerous cases using the Python programming lan-
guage by Eldar Sultanow [2]. This investigation is motivated by the use case of information
encryption and efficiency improvement of cryptographic algorithms, especially of those
algorithms that are implemented by a linear feedback shifting register (LFSR) as demon-
strated by Grosek and Hromada [3]. In the following we will develop a computational base
for the binary rotation, its related cycles and generalize the divisibility feature. Definition 1
specifies the term “left-rotational distance” as follows:

Definition 1. The left-rotational distance r of a binary number B is the number of rotations, which
lead from Bmin to Bmax.

Let us take a binary number B of length l with N1(B) ones (and N0(B) = l−N1(B) zeros),
for example l = 8, N1(B) = 5 and B = 10110101 = 181, the minimum that is obtainable by
rotating B is Bmin = 01011011 = 91 and the maximum is Bmax = 11011010 = 218. The left-
rotational distance is r = 3, since we obtain the maximum 11011010 by three left rotates of
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the minimum 01011011. The maximum 218 = (91× 23) mod (255) can be obtained directly
using Equation (1) as follows:

Bmax = (Bmin · 2r) mod (2l − 1)
Bmin = (Bmax · 2l−r) mod (2l − 1)

(1)

Vice versa, we calculate the minimum directly as 91 = (218× 28−3) mod (255). More-
over, we can calculate the length l (See Sedgewick and Wayne [4], p. 185) and the Hamming
weight N1(B) using Bmax (see Weisstein [5] and Allouche and Shallit [6], p. 74) directly:

l = blog2(Bmax)c+ 1
N1(B) = Bmax − gde(Bmax!, 2) = Bmax −∑l−1

i=1bBmax/2ic

It is briefly mentioned that gde(n, 2) denotes the greatest dividing exponent of the
base 2 with respect to a number n, which is the largest integer value of k such that 2k | n
with 2k ≤ n, see [7].

By applying these formulas to our example, we obtain l = blog2(218)c+ 1 = 7+ 1 = 8
and N1(B) = 218− gde(218!, 2) = 218− (109 + 54 + 27 + 13 + 6 + 3 + 1) = 218− 213 = 5.
The divisibility l | N1(B) · r + 1 can be written in our example as 8 |

(
218−∑7

i=1b218/2ic
)
·

3 + 1. In our example the divisibility l | N1(B) · r + 1 holds, since 8 | 5× 3 + 1 is true.
Our question is: Under which circumstances is this divisibility generally granted? The

paper aims to describe the rotational behavior allowing us to unveil its connection to cycles
and related concepts and to generalize the 3n + c cycles to kn + c cycles. The approach to
the question of divisibility behavior can be summarized as follows:

• Describing the rotational behavior: Starting point is the diophantine Equation (2).
Showing that this diophantine equation always has solutions a, b would answer the
question of whether the divisibility holds.

• Unveiling the connection between rotations, cycles, and related concepts: By intro-
ducing a boundary feature with Function (6), Halbeisen and Hungerbühler lay the
foundation for this, which Cox et al. supplemented with another feature by Func-
tion (7). The cycle’s existence depends on this divisibility as stated by Theorem 3.

• Generalizing from 3n + c to kn + c cycles: With this generalization, we broaden the
field to study the divisibility behavior. Section 9 makes the key contribution to this.
We could generalize Theorem 3 for restricting the existence of cycles depending on the
divisibility. A proof of this divisibility remains still open.

Theorems in the body of this paper, notably the referred work of Halbeisen and
Hungerbühler [8] provide ways of describing the rotational behavior, but no proof of this
divisibility. The diophantine Equation (2) is strongly related to this question: To prove that
this divisibility holds, we need to show that there always exist integers a and b that solve
the diophantine equation, which we deduce from Equation (1):(

(2l − 1)b + Bmax

Bmin

)N1(B)

= 2a·l−1 = 2r·N1(B) (2)

In our example a = b = 2 provide a solution: to solve 218 = (91× 2r) mod (28 − 1)
we substitute 2r = Y and solve the linear congruence (91 ·Y) ≡ 218 mod (28 − 1), which
is solvable if gcd(91, 28 − 1) | 218 and there is a unique solution if 91 and the modulus
28 − 1 are coprime gcd(91, 28 − 1) = 1. This coprimality is given here. The solution is
Y ≡ 8 mod (255) and resubstitution of Y leads to 2r ≡ 8 mod (255), which brings us to
the solutions r = 3, 11, 19, 27, . . . and so on. All these r values enables us to find solutions
a = 2, 7, 12 for 5 · r = 8 · a− 1. In order that the divisibility l | N1(B) · r + 1 is given, we
must show that gcd(Bmin, 2L − 1) | Bmax and 2l − 1 | 2rBmin − Bmax.

Based on the fact that binary rotations lead to 3n + c cycles, Section 3 contributes
as well to the question under which conditions the divisibility is granted. Although we
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can illustrate and exemplify this divisibility behavior for many such cycles, we have not
succeeded in providing a proof. At least we were able to identify and compile connections,
limitations, and references to related/relevant concepts. The generalization of binary rota-
tions to kn + c cycles in Section 9 expands the field of the investigated divisibility behavior.

2. Fields of Application

In today’s world, or rather in today’s digital age, cryptographic methods have become
increasingly important in order to ensure confidentiality, secrecy, and integrity of data
in the presence of an adversary. Our results have the potential to contribute to existing
approaches of encrypting information and moreover to provide new ways to perform
encryption possibly more efficiently. Currently, LFSR is one of the main methods for
cryptography (see Grosek and Hromada [3]) and they possess already an efficiency. Our
idea consists in utilizing the findings given in the following sections to make LFSR’s more
efficient (due to lowering memory requirements) by abbreviating shifting algorithms with
the Collatz method.

We reduce the amount of electrical calculation to the number of equivalence classes
instead of the number of binaries 2l , since we will see that the characteristics within such a
class are constant (see in Section 7). Therefore we only have to calculate any equation once
for an equivalence class and can simply shift it by an e.g., LFSR afterward. In Section 8 we
will also calculate the amount of all equivalence classes for a given length l and therefore
the ratio of computational power reduction.

Moreover we will generalize our given 3n + c cycles to kn + c cycles for a more generic
version of cycle representation (see in Section 9). This possesses a novelty value of our work
too and provides the most practical application, such as for example the field of application
for randomness. The importance of Collatz sequences for randomness has been elaborated
extensively in the literature, which we want to take up briefly with the following digression.
If we take any odd integer, let’ say x0 as an input for the repeatedly called function fc
(which is function (4)). We can assume that the function f is “sufficiently mixing”, since
f (x) is called repeatedly an the output f (x) becomes due to the additional variable k more
and more obfuscated.

We clearly see the potential of those procedures and, furthermore, even Apple decided
to submit for a patent [9] in order to use Collatz as a one-way hashing function, since the
algorithms become increasingly important.

3. Binary Rotations Lead Us to 3n + c Cycles

Take a binary number B with a Hamming weight N1(B) as input for a function z,
which Darrel Cox [1] defined as follows, where 0 ≤ x1 < x2 < . . . < xN1(B) ≤ N1(B)− 1
are the positions (indexing is zero-based) in B occupied by 1:

z(B) =
N1(B)

∑
i=1

3N1(B)−i2xi (3)

This function z is adapted from Halbeisen’s and Hungerbühler’s function ϕ, see [8].
In the introductory example Bmax = 11011010 we have z(Bmax) = z(11011010) = 319 and
the five positions in our binary number Bmax that are occupied by 1 are (x1, x2, x3, x4, x5) =
(0, 1, 3, 4, 6):

319 = 3N1(B)−12x1 + 3N1(B)−22x2 + 3N1(B)−32x3 + 3N1(B)−42x4 + 3N1(B)−52x5

= 3420 + 3321 + 3223 + 3124 + 3026

Similarly we can calculate z(Bmin) = z(01011011) = 842. Both integers, the 319 and
the 864 belong to a 3n + 13 cycle that is given by the following function whose parameter
in this case is c = 2l − 3N1(B) = 13:
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fc(x) =

{
3x+c/2 2 - x
x/2 otherwise

(4)

Note that 319 is the smallest member and 864 is the largest member of this sequence
and the binary representation of Bmax = 11011010 reflects the course of this cycle starting
with its smallest member 319, where the ones represent odd members and the zeros
represent even members:

(v1, v2, v3, v4, v5, v6, v7, v8) = (319, 485, 734, 367, 557, 842, 421, 638)

Table 1 shows the left-rotational distances of a binary number that we obtain from the
integer x in the first column using the reverse function z−1(x) to another number located
in the same row of v. For example the left-rotational distance of 557 = z(10101101) to
734 = z(01101011) is six, which we highlighted blue. Table 1 highlights our case of the
rotational distance from 842 = z(01011011) = z(Bmin) to 319 = z(11011010) = z(Bmax)
using the color green. The integer r = 3 is the only rotational distance value that provides a
solution for the divisibility 8 | 5 · r + 1.

Table 1. Rotational distances of the 3x + 13 cycle members.

319 485 734 367 557 842 421 638

319 0 1 2 3 4 5 6 7
485 7 0 1 2 3 4 5 6
734 6 7 0 1 2 3 4 5
367 5 6 7 0 1 2 3 4
557 4 5 6 7 0 1 2 3
842 3 4 5 6 7 0 1 2
421 2 3 4 5 6 7 0 1
638 1 2 3 4 5 6 7 0

4. What We Know about Cycles

Starting point of our considerations is the function fc(x) given by Equation (4). Be-
low we introduce a monoidal description of cycles. And as part of our own contribution,
we develop a formula for calculating the smallest member in such a cycle.

Let S be a set containing two elements n1 and n0, which are bijective functions over Q:

n1(x) = 3x+c/2 n0(x) = x/2 (5)

Let a binary operation be the left-to-right composition of functions n1 ◦ n0, where
n1 ◦ n0(x) = n0(n1(x)). S∗ is the composition monoid (transformation monoid), which
is freely generated by S. The identity element is the identity function idQ = e. We call e
an empty string. S∗ consists of all expressions (strings) that can be concatenated from the
generators n1 and n0. Every string can be written in precisely one way as product of factors
n1 and n0 and natural exponents ki > 0:

e, nk1
1 , nk1

0 , nk1
1 nk2

0 , nk1
0 nk2

1 , nk1
1 nk2

0 nk3
1 , nk1

0 nk2
1 nk3

0 , . . .

These uniquely written products are called reduced words over S. Using exponents
ki, hi > 0, we construct strings si = nki

1 nhi
0 and concatenate these to a larger string:

s1s2 · · · sl = nk1
1 nh1

0 nk2
1 nh2

0 · · · n
kl
1 nhl

0

Note that each string si is a reduced word, since ki, hi > 0. Let us evaluate this (large)
string by inputting a natural number v1. If the result is again v1 then we obtain a cycle:

nk1
1 nh1

0 nk2
1 nh2

0 · · · n
kl
1 nhl

0 (v1) = nhl
0 (nkl

1 (· · · n
h2
0 (nk2

1 (nh1
0 (nk1

1 (v1)))))) = v1
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We write the sums briefly as N1 = k1 + · · ·+ kl and N0 = h1 + · · ·+ hl . The cycle
contains N1 + N0 elements. Example 2 illustrates, how bit rotations relate to compositions
of the two functions n0 and n1. We summarize this fact to the following Definition 2:

Definition 2. A cycle consists of N1 + N0 elements, where N1 = k1 + · · ·+ kl is the number of
its odd members and N0 = h1 + · · ·+ hl the number of its even members.

Moreover we define A = a1 + · · ·+ al with

ai = 2∑i−1
j=1 kj+hj ·

(
3ki − 2ki

)
· 3∑l

j=i+1 kj

We introduced this Definition 2 to prepare or allow us for the formulation of Theorem 1,
which calculates the smallest member of the 3n + c cycle, which in line with Definition 2
consists of N1 odd and N0 even members:

Theorem 1. The smallest number v1 belonging to a cycle having N1 odd and N0 even members is:

v1 =
c · A

2N1+N0 − 3N1

This Theorem 1 corresponds to Theorem 5 provided and proved by Anant Gupta [10].
Note that we stick to our notation since it is aligned with Weisstein’s (and Allouche’s and
Shallit’s) established formalism.

Example 1. We consider a 3n + 11 cycle that has N1 + N0 = 8 + 6 = 14 elements and choose
(k1, k2, k3, k4) = (3, 1, 3, 1) and (h1, h2, h3, h4) = (1, 1, 2, 2). Its smallest element is v1 = 13 and
we obtain all elements by evaluating the strings: v2 = n1(v1), v3 = n1(v2), v4 = n1(v3) and
v5 = n0(v4) and so forth. It applies:

n1n1n1n0 ◦ n1n0 ◦ n1n1n1n0n0 ◦ n1n0n0(v1)

= n3
1n0 ◦ n1n0 ◦ n3

1n2
0 ◦ n1n2

0(v1)

= s1 ◦ s2 ◦ s3 ◦ s4(v1) = v1

This cycle is (v1, v2, v3, . . . , v14) = (13, 25, 43, 70, 35, 58, 29, 49, 79, 124, 62, 31, 52, 26). We calcu-
late v1 directly as follows:

v1 =
11× 11609
28+6 − 38 =

11× 11609
9823

= 13

In this case 11609 = A = a1 + a2 + a3 + a4 = 4617 + 1296 + 3648 + 2048:

a1 = 20 (33 − 23) 31+3+1 = 4617
a2 = 23+1 (31 − 21) 33+1 = 1296
a3 = 23+1+1+1 (33 − 23) 31 = 3648
a4 = 23+1+1+1+3+2 (31 − 21) 30 = 2048

Theorem 2. The maximum odd element in a 3n + c cycle occurs immediately before the maximum
even element.

Proof. The maximum even element of the cycle cannot succeed an even element as the
preceding element would be twice the element taken. The maximum odd element occurs
before the maximum even element is equivalent to saying that the maximum even element
follows the maximum odd element. Let v1, v2 be odd elements in the cycle with v1 > v2,
then the elements after v1, v2 will be w1 = 3v1+c/2 and w2 = 3v2+c/2. Since v1 > v2 and
w1 > w2, the element after the maximum odd element is greater than the element after
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any other odd element. Therefore the maximum odd element of the cycle precedes the
maximum even element of the cycle.

In conformity with Definition 2, let us consider a 3n + c cycle (v1, v2, . . . , vl) consisting
of N1 odd integers and N0 even integers. Let us consider a binary parity vector (it is
synonymous to a binary sequence or binary non-reduced word) consisting of l = N1 + N0
elements, which has a 1 at position i, if vi is odd, and otherwise 0. Theorem 3 specifies
several cycle restrictions:

Theorem 3. For a 3n + c cycle with N1 odd and N0 even members applies:

(a) A cycle only exists if the inequality 2N1+N0 − 3N1 > 0 holds, see [11].
(b) The condition for a cycle’s existence can be detailed as follows [11]: A non-inherited cycle only

exists if c | 2N1+N0 − 3N1 .
(c) Let 0 ≤ x1 < x2 < . . . < xN1 ≤ N1 − 1 be all positions (the indexing is zero-based) in the

parity vector occupied by 1. A 3n + c cycle only exists if the divisibility 2N1+N0 − 3N1 | c · z(s)
holds, where z is the function given by (3), see [11,12].

(d) The number of 3n + c cycles is always less than or equal to the number of 3n + a · c cycles,
where a is an odd number (this can be deduced from the work of Darrell Cox [11] as well).

Example 2. We refer to the 3n + 11 cycle (13, 25, 43, 70, 35, 58, 29, 49, 79, 124, 62, 31, 52, 26)
again. The corresponding parity vector is (1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0) and the non-reduced
word is n1n1n1n0n1n0n1n1n1n0n0n1n0n0.

The indices are (x1, . . . , x8) = (0, 1, 2, 4, 6, 7, 8, 11) and therefore z(8) = 3720 + 3621 +
3522 + 3424 + 3326 + 3227 + 3128 + 30211 = 11609.
Correctly it applies that 28+6 − 38 | 11 × 11609, more specifically it is 9.823 | 127.699 and
9.823× 13 = 127.699.

Theorem 4. Two different primitive cycles, 3n + c1 and 3n + c2, can never share a common parity
vector.

Proof. A 3n + c cycle with a given parity vector first appears at:

c =
2N1+N0 − 3N1

gcd(A, 2N1+N0 − 3N1)

Let there exist cycles 3n + c1 and 3n + c2 with the same parity vector, this implies
that the values of A and 2N1+N0 − 3N1 as defined in Definition 2 are the same for both
cycles. Therefore using the formula, a cycle can exist iff v1 is an integer, i.e., c · A divides
2N1+N0 − 3N1 . The cycle will originate for the minimum such value of c. Therefore there can
only be one value of c for which the parity vector produces a cycle that is not inherited.

5. Boundary Features of Cycles

Halbeisen and Hungerbühler [8] introduced a boundary feature for cycles as a function
M(l, n), where l is the cycle length and n the number of its odd members. Let Sl,n denote
the set of all binary words of length l containing exactly n ones and otherwise only zeros.
This set contains exactly ( l

n) words—exactly the number of ways in which we may select n
elements out of l total where the order is irrelevant. In Halbeisen’s and Hungerbühler’s
notation, the Hamming weight is denoted by n, which corresponds to our notation N1
following Wolfram Math [5], that is n = N1. In the example given by Table 2, the elements
of the set S5,2 are all listed in the first column.

The second column of Table 2 contains all binary words that result from left-rotating
the binary word B in the first column up to l times:

λleft(B, 5), λleft(B, 1), λleft(B, 2), λleft(B, 3), λleft(B, 4)
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In generalized terms, this set is denoted as σ(B) = {λleft(B, i) : 1 ≤ i ≤ l}. Remember-
ing that z is the function (3), the third column of Table 2 contains the corresponding output
of this function when inputting the rotated binary words:

z(λleft(B, 5)), z(λleft(B, 1)), z(λleft(B, 2)), z(λleft(B, 3)), z(λleft(B, 4))

The last column contains the minimum of these values. Finally, the largest of all these
minima is M(5, 2) or generally, see [8]:

M(l, n) = max
B∈Sl,n

{ min
t∈σ(B)

z(t) } (6)

Additionally to Halbeisen’s and Hungerbühler’s boundary feature M(l, n) Darrell
Cox et al. [1] introduced another boundary feature as a function N(l, n). Let g = gcd(l, n),
the function N(l, n) is defined as follows:

N(l, n) = 2 ·M(l, n)−
g−1

∑
i=0

2i·n/g3n−1−i·n/g (7)

Example 3. We choose a cycle given by fc(x) of length l = 5 having n = 2 odd members, where
c = 2l − 3n = 25 − 32 = 23. Let us choose the binary words 11000 and 10100 and calculate the
smallest member of the corresponding cycle in each case.

In the first case, namely 11000 synonymous with n1n1n0n0n0 = n2
1n3

0 = nk1
1 nh1

0 we obtain
v1 = c·A/2N1+N0−3N1 = 23·5/22+3−32 = 5. The resulting cycle is (5, 19, 40, 20, 10) which is given
by the first row and third column in Table 2.

In the second case, 10100 that is synonymous with n1n0n1n0n0 = n1
1n1

0n1
1n2

0 = nk1
1 nh1

0 nk2
1 nh2

0
we obtain v1 = 23·7/22+3−32 = 7. The resulting cycle is (7, 22, 11, 28, 14) which is given by the
second row and third column in Table 2.

Table 2 exhibits how M(l, n) is calculated, which in our concrete case is M(5, 2) = 7.
Additionally we calculate N(5, 2) = 2 ·M(5, 2)− 2032−1−0 = 14− 3 = 11.

Table 2. Calculation of M(5, 2).

Word s Set σ(s) of Left Rotated Words {z(t) : t ∈ σ(s)} min
t∈σ(s)

z(t)

1 11000 11000, 10001, 00011, 00110, 01100 5, 19, 40, 20, 10 5

2 10100 10100, 01001, 10010, 00101, 01010 7, 22, 11, 28, 14 7

3 10010 10010, 00101, 01010, 10100, 01001 11, 28, 14, 7, 22 7

4 10001 10001, 00011, 00110, 01100, 11000 19, 40, 20, 10, 5 5

5 01100 01100, 11000, 10001, 00011, 00110 10, 5, 19, 40, 20 5

6 01010 01010, 10100, 01001, 10010, 00101 14, 7, 22, 11, 28 7

7 01001 01001, 10010, 00101, 01010, 10100 22, 11, 28, 14, 7 7

8 00110 00110, 01100, 11000, 10001, 00011 20, 10, 5, 19, 40 5

9 00101 00101, 01010, 10100, 01001, 10010 28, 14, 7, 22, 11 7

10 00011 00011, 00110, 01100, 11000, 10001 40, 20, 10, 5, 19 5

The largest of all minimum z values is M(l, n) = M(5, 2) = 7

6. Constructing One Cycle from Another

Cycles may interrelate, which means they have the same length and an equal amount of
odd members. We refer to Example 3 and consider the 3n + 23 cycle (5, 19, 40, 20, 10). A cy-
cle, which interrelates to this 3n+ 23 cycle is for example the 3n+ 69 cycle (15, 57, 120, 60, 30).
The latter is a non-primitive cycle (see definition in Appendix A).



AppliedMath 2022, 2 111

If we go back to Example 1, then we can provide two interrelated cycles as well.
For l = N1 + N0 = 8 + 6 = 14 we obtain c = 2l − 3N1 = 214 − 38 = 9823 and the 3n + 9823
cycle is (11609, 22325, 38399, 62510, 31255, 51794, 25897, 43757, 70547, 110732, 55366, 27683,
46436, 23218).

When we divide the parameter c and all cycle members by 893, then we obtain the
reduced interrelated 3n + 11 cycle (13, 25, 43, 70, 35, 58, 29, 49, 79, 124, 62, 31, 52, 26).

Theorem 5. Let a 3n + c cycle of length l = N1 + N0 has N1 odd and N0 even members, where
c = 2l − 3N1 . It always applies that M(l, n) is greater than the smallest member and N(l, n) is less
than the largest odd member of this cycle. Recall that we can take N1 and n to be synonymous, since
Halbeisen and Hungerbühler denote the Hamming weight by n.

If c is divisible by an odd integer a, then for the (reduced) interrelated 3n + c/a cycle it applies
that M(l,n)/a is greater than the smallest member and N(l,n)/a is less than the largest odd member of
this reduced cycle.

The upper bound M(l, n) has been unveiled and proved by Halbeisen and Hungerbüh-
ler [8] and the lower bound N(l, n) was discovered and empirically verified by Cox et al. [1].

7. Constant Sums of 3n + c Cycle Members

For a compact visualization of our cycle member, we will collect all cycle elements z(B)
from all shifted versions of a given vector B in so-called equivalence classes. The reason
why we declare those equivalence classes is that any member within such a class can be
calculated also over the equivalence class representative. As we will see in this section, we
can utilize this phenomenon due to the constancy within the equivalence classes.

Let us consider the set of all possible binary words of the length l = 5. This set contains
25 = 32 elements. There exist 8 different periodic sequences, whereby we consider two
sequences to be the same, if one of them can be obtained by left or right rotations from the
other. Therefore different sequences do not share any sequence member. The members
of these different sequences do not depend on the binary word’s value, but from its
length l and Hamming weight N1(B). A set of elements with the same sequence is called
equivalence class.

Now, let us regard a set of the same (periodic) sequences and the number of its members
is not equal to l. In this case the members of these sequences additionally depend from
the left-rotational distance r of Bmin to Bmax. In those cases the set may contain l/2, l/3 or
2l sequences.

Let B be a binary number of length l and with a Hamming weight N1(B). We use this
binary number B to create a 3n + c sequence (v1, v2, . . . , vl) by performing left-rotations
and applying the function z as we did in Section 5:

v1 = z(λleft(B, 1)), v2 = z(λleft(B, 2)), . . . , vl = z(λleft(B, l))

Moreover, we define a function Z that uses the binary number B as an input and yields
the sum of all the members belonging to the periodic sequence (v1, v2, . . . , vl) which we
generated from B:

Z(B) =
l

∑
i=1

vi =
l

∑
i=1

z(λleft(B, i))

Example 4. We choose B = 00001 and this results in Bmin = 00001 and Bmax = 10000.
The length l = 5 and the Hamming weight N1(B) = 1. This is a really trivial case of periodic
sequence generation. Each row in Table 3 depicts the periodic sequence which we generated from
B. This Table 3 illustrates that the generated cycles are not only reflected (horizontally) by rows,
but also (vertically) by columns. That is because the digit 1 appears on every position within our
rotated binary number B only once. Finally always Z(B) = 2l − 1 = 31. Note that Bmin and Bmax
are identical for the (rotated) B in each table row, since rotating a binary number generally does



AppliedMath 2022, 2 112

not affect the corresponding Bmin and Bmax. Halbeisen’s and Hungerbühler’s set Sl,n which we
introduced in Section 5 contains in the present case l words: Sl,n = S5,1 = (5

1) = 5. Therefore our
equivalence class for l = 5 and the Hamming weight N1(B) = 1 has the size of 5 elements. This
behavior is exactly the same for N1(B) = l − 1, since the binary number 11110 behaves in the same
way as 00001.

Table 3. Trivial Case for l = 5 and N1(B) = 1.

B v1 v2 v3 v4 v5 Z(B)

00001 = 1 16 8 4 2 1 31
00010 = 2 8 4 2 1 16 31
00100 = 4 4 2 1 16 8 31
01000 = 8 2 1 16 8 4 31
10000 = 16 1 16 8 4 2 31

Z(B) = 31 31 31 31 31

Now let us consider less trivial cases. The number of possible Hamming weights is
odd for a binary word having an even length. For instance, if the binary number’s length
l = 4 then this binary number can have a Hamming weight N1(B) ∈ {0, 1, 2, 3, 4}. If
the binary number’s length l = 6 then this binary number can have a Hamming weight
N1(B) ∈ {0, 1, 2, 3, 4, 5, 6}.

Example 5. We choose B = 001001 which results in Bmin = 001001 and Bmax = 100100.
The length l = 6 is even and the Hamming weight is N1(B) = 2. Table 4 shows that for N1(B) = 2
the periodic sequence which we generated from B represents a concatenation of the cycle (44, 22, 11),
in which this cycle occurs exactly twice. In other words, this sequence has N1(B) = 2 periods. We
have l/N1(B) = 6/2 = 3 distinct words and therefore 3 distinct equivalence class members in this
periodic sequence which we generated from B.

When we invert the binary number B = 001001 by replacing 0 with 1 (and vice versa)
we obtain the binary number 110110. This inverted binary number has the Hamming weight
N1(B) = l − 2 = 4 and exhibits the same behavior as B = 001001. Generally spoken, the cases for
N1(B) = l − 2 behave as same as N1(B) = 2.

Table 4. Non-trivial case for l = 6 and N1(B) = 2.

B v1 v2 v3 v4 v5 v6 Z(B)

001001 = 9 44 22 11 44 22 11 154
010010 = 18 22 11 44 22 11 44 154
100100 = 36 11 44 22 11 44 22 154

1/2 · Z(B) = 77 77 77 77 77 77

Example 6. We choose B = 010101 which results in Bmin = 010101 and Bmax = 101010.
The length is again l = 6 and the Hamming weight is N1(B) = 3. Table 5 shows that for
N1(B) = 3 the periodic sequence which we generated from B represents a concatenation of the cycle
(74, 37), in which this cycle occurs exactly three times. In other words, this sequence has N1(B) = 3
periods. Here we have l/N1(B) = 6/3 = 2 distinct words and therefore 2 distinct equivalence class
members in this periodic sequence which we generated from B.

Also here, inverting the binary number B leads to the same behavior, i.e., the cases for N1(B) = l− 3
behave the same as N1(B) = 3.
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Table 5. Non-trivial case for l = 6 and N1(B) = 3.

B v1 v2 v3 v4 v5 v6 Z(B)

010101 = 21 74 37 74 37 74 37 333
101010 = 42 37 74 37 74 37 74 333

1/3 · Z(B) = 111 111 111 111 111 111

It is important to note in conclusion that the amount of cycles that we can generate
from a given binary number B is deterministic and not random. The Hamming weight
N1(B) affects the binary combinatorics and it affects together with the length l the number
of possible cycles that we are able to generate from B.

For a given binary number B of length l with a Hamming weight N1(B) the cases
behave as same as for the inverted binary number (having the Hamming weight l− N1(B)).
For a given binary number B the possibilities for generating periodic sequences from B are
limited as well.

8. Equivalence Classes for a Binary B of Length l

In the previous section, we took a look at the construct within one equivalence class.
In this section we will analyze the construct from all different equivalence classes to each
other for all possible binary input values B of a given length l.

It is important to understand how many equivalence classes there exist, or in other
words, how many different constants Z(B) we have for any given length l with all pos-
sible binaries B. Grosek and Hromada [3] provide us a formula to obtain the amount of
equivalence classes for a given length l.

C(l, N1(B), d) =
1
d
·


(

d
N1(B)·d

l

)
−

k

∑
k∈Dl,N1(B)
k|d , k<d

k · C(l, N1(B), k)

 (8)

C(l, N1(B), d) returns how many equivalence classes we have for our input parameters
l, the hamming weight N1(B) and the cardinality d of an equivalence class. In trivial cases
the size and therefore the cardinality of any class is always d = |B| = l and also for a
Hamming weight of N1(B) = 0 or N1(B) = l the cardinality is always d = 1 since we only
have one sequence with only ones ore zeros. But due to the periodicity in non-trivial cases
we also have different sizes for our classes and therefore also different cardinalities for each
class. We collect different cardinalities for a given length l and hamming weight N1(B) in
Dl,N1(B).

Dl,N1(B) = {d1, d2, ..., di} (9)

Example 7. Now let us find out how many equivalence classes we have for a binary word of length
l = 6. First we need all cardinalities for each possible Hamming weight N1(B) with 0 ≤ N1(B) ≤ l.
The cardinalities are as followed D6,0 = D6,6 = {1}, D6,1 = D6,5 = {6},since this counts for all
trivial cases. D6,2 = D6,4 = {6, 3} and D6,3 = {6, 2} are non trivial cases and have therefor more
than one equivalence class with different sizes. In Tables 4 and 5 we already saw the different sizes
of the equivalence classes for those cardinalities.

Now we can start applying our input parameters to formula (8). First let us look at the sum
function in our equation. The sum has three conditions k ∈ Dl,N1(B), k|d and k < d. Since k has to
be less than d but also be an element out of Dl,N1(B) it is necessary to have at least two elements in
Dl,N1(B) to hit the sum. In trivial cases it is otherwise always zero.
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C(6, 0, 1) =
1
1
×
(

1
0

)
= 1 case

C(6, 6, 1) =
1
1
×
(

1
1

)
= 1 case

C(6, 1, 6) =
1
6
×
(

6
1

)
= 1 case

C(6, 5, 6) =
1
6
×
(

6
5

)
= 1 case

After calculating our trivial cases we clearly see that we end with only one specific equivalence
class for those given input variables.

Now let us look at one non trivial case with the input parameter l = 6, N1(B) = 2 and
D6,2 = 6, 3.

C(6, 2, 3) =
1
3
×
[(

3
1

)
− 0× 0

]
= 1 case

C(6, 2, 6) =
1
6
×
[(

1
1

)
− 3× 1

]
= 2 cases

The first equation has again zero for the sum function, since k = 3 is indeed an element of
Dl,N1(B) but not smaller than the cardinality d1 = 3. On the other hand for d2 = 6 in D6,2 = {3, 6}
we do have a possible value for the sum index k. In fact k = 3 fulfills all three conditions and has
therefore −3 · C(6, 2, 3) as an additional subtrahend in our equation.

If we do the same for D6,4 = {6, 3} and D6,3 = {6, 2} we end up with C(6, 4, 3) = 1 case,
C(6, 3, 2) = 1 case, C(6, 4, 6) = 2 cases and C(6, 3, 6) = 3 cases. After counting the cases we end
up with 14 different constants, like we already mentioned in the previous chapter.

9. Generalizations to kn + c Cycles

First we generalize the function (4) by introducing the following function:

fk,c(x) =

{
kx+c/2 2 - x
x/2 otherwise

(10)

9.1. Generalization of Theorem 1

We can generalize Theorem 1 by replacing 3 by k. The smallest number v1 belonging
to a kn + c cycle having N1 odd and N0 even members is:

v1 =
c · A

(k− 2)(2N1+N0 − kN1)

9.2. Generalization of Theorem 2

Theorem 2 applies equally to kn + c cycles as it does to 3n + c cycles. The proof
provided for Theorem 2 is trivially generalizable to kn + c cycles. This applies to the proof
of the generalized Theorem 1 too.

9.3. Generalization of Theorem 3

Leaving the task of prove to the reader, we simply generalize Theorem 3 for kn + c
cycles having N1 odd and N0 even members:

(a) A cycle only exists if the inequality 2N1+N0 − kN1 > 0 holds.
(b) A cycle only exists if the integer c and the difference 2N1+N0 − kN1 are not coprime:

gcd(c, 2N1+N0 − kN1) > 1.
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(c) Let 0 ≤ x1 < x2 < . . . < xN1 <≤ N1 − 1 be all positions (the indexing is zero-based)
in the parity vector occupied by 1. A cycle only exists if the divisibility 2N1+N0 − kN1 |
c · z(s) holds, where z is the function (3).

(d) The number of kn + c cycles is always less than or equal to the number of kn + a · c
cycles, where a is an odd number.

9.4. Generalization of Theorem 4

We generalize Theorem 4 by stating that two different primitive cycles, kn + c1 and
kn + c2, can never share a common parity vector.

Proof. A kn + c cycle with a given parity vector first appears at:

c =
(k− 2)(2N1+N0 − kN0)

gcd(A, (k− 2)(2N1+N0 − kN0))

Let there exist cycles kn + c1 and kn + c1 with the same parity vector, this implies
that the values of A and (k − 2)(2N1+N0 − kN1) as defined in Definition 2 are same for
both the cycles. Therefore using the formula, a cycle can exist if v1 is an integer, i.e., c · A
divides (k− 2)(2N1+N0 − kN1). The cycle will originate for the minimum such value of c.
Therefore there can only be one value of c for which the parity vector produces a cycle that
is not inherited.

9.5. Generalizing the Binary Rotations to kn + c Cycles

Let B be a binary number. The divisibility feature l | N1(B) · r + 1, demonstrated in
Section 3 holds for the generalized kn + c cycles. For this we set c = (k− 2)(2l − kN1(B))
and generalize function (3) as follows:

zk(B) =
N1

∑
i=1

kN1−i2xi (11)

Here again 0 ≤ x1 < x2 < . . . < xN1 ≤ N1 − 1 are the positions (indexing is zero-
based) in B occupied by 1. It should be noted that this divisibility is an observation that
remains to be proven. Possibly such a proof would contribute significantly to a proof of the
Collatz conjecture.

9.6. More Theorems for kn + c Cycles

A positive integer k is called a Crandall number, if there exists a kn + 1 cycle. The fol-
lowing very fundamental Theorem 6 is well known, see [13,14]:

Theorem 6. Every Wieferich number is a Crandall number. In other words, if k is a Wieferich
number, then a cycle kn + 1 cycle exists.

Franco and Pomerance provided a proof for Theorem 6 in their paper [14].

Theorem 7. If c1 and c2 are coprime, then for a given k both functions fk,c1 and fk,c2 do not have
any common non-trivial cycle (cycle with the same parity vector).

A proof is given by Anant Gupta [10]. The idea can be sketched as follows: Let i be an
integer. Since ki does not divide 2N1+N0 − kN1 , all kn + c cycles where c = ki will require
2N1+N0 − kN1 to divide A (recall that A is specified by Definition 2), which is the same
condition for kx + 1 cycles. This implies that all cycles of fk,ki are equal to the cycles of fk,1.
Similarly all cycles of fk,c are equal to the cycles of fk,ki ·c.
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10. Conclusions

In this paper, we investigated the behavior of rotating binary numbers. We found out
that a rotation by r digits to the left of a binary number B exhibits in particular cases the
divisibility l | N1(B) · r + 1, where l is the bit-length of B and N1 is the Hamming weight
of B and r is the left-rotational distance as specified by Definition 1. We investigated the
connection between this rotational distance, the bit length, and the Hamming weight.
A core property is, that only under certain circumstances the above-mentioned divisibility
becomes true – namely, this divisibility occurs for cycles.

Additionally, we reduce the amount of electrical calculation for the cycle calculations to
the number of equivalence classes instead of the number of binaries 2l . The cycle generation
is exactly the same for any member within such a class and can therefore be resolved from
the other members that have been already calculated.

Furthermore, we defined a more generic version of sufficiently mixing with more
cryptography power, since we generalize 3x + c cycles to kx + c cycles by introducing
another variable k. Therefore, the range of all possible values becomes expanded and
more obfuscated.
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Appendix A

Fundamentals short and sweet

B We denote B as a number in base-2 representation (a binary word) of
bit-length l = N1(B) + N0(B) consisting of N1(B) ones and N0(B) zeros.

bit-length The bit-length l of an integer n specifies the number of bits used for the
binary representation of this integer. It is given by l = blog2(n)c+ 1 =
dlog2(n + 1)e, see [15].

gde(n, 2) The greatest dividing exponent of base 2 with respect to a number n is
the largest integer value of k such that 2k | n, where 2k ≤ n, see [7].

digit count
N2

d (B)
The number N2

d (B) = Nd(B) of digits d in the base-2 representation of
the number B is called the binary digit count for d. Thus N1(B) specifies
the number of ones in B (also termed as Hamming weight of B) given by
the difference B− gde(B!, 2). Analogously, N0(B) specified the number
of zeros in B [5].

rotate a
binary

The left rotation (left circular shift) of a binary B by r bits is the func-
tion λleft(B, r, l) = (B · 2r) mod (2l − 1)), where l is the bit-length of B.
The right rotation is given by λright(B, r, l) = λleft(B, l − r, l). The bit-
length is implicitly given and we can use shorter λleft(B, r).
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rotational
distance

The left-rotational distance of a binary B2 from the binary B1 is the re-
quired amount of rotating B1 (bit by bit) until the rotated binary matches
B2. The right-rotational distance is defined analogously.

3n + c cycle We consider the function fc(x) given by Equation (4) and call a cycle the
sequence of distinct positive integers (v1, v2, . . . , vl) where fc(v1) = v2
and fc(v2) = v3 and so forth and finally fc(vl+1) = v1.

kn + c cycle We generalize 3n + c cycles by replacing 3 with any positive integer k.
periodic
sequence

Let (v1, v2, . . . , vl) be a 3n + c cycle. We call a sequence that forms a
repetition of this cycle (v1, v2, . . . , vl , v1, v2, . . . , vl , . . .) periodic.

Primitive
cycle

If all members of a 3n + c cycle share a same common divisor greater
than one, then this cycle is referred to as a non-primitve (inherited or
interrelated) cycle, otherwise it is a primitve cycle, see [1].

Parity vector The parity vector of a 3n+ c cycle (v1, v2, . . . , vl) is a binary vector having
l = N1 + N0 entries – a 1 at position i, if vi is odd, and otherwise 0.

Non-
reduced
word

Let us consider a 3n + c cycle with N1 odd and N0 even members.
The non-reduced word describing this cycle is a word of length N1 + N0
over the alphabet {n1, n0}, which has a n1 at those positions, where an
odd member and a n0 where an even member is located in the cycle.
For instance, we treat the word n1n0n1n1n0n1n0n1 synonymous to the
parity vector (1, 0, 1, 1, 0, 1, 0, 1) or even simpler to the binary sequence
(binary word) 10110101.
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