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Abstract: Wigner showed that a sufficiently thin electron gas will condense into a crystal of localized
electrons. Here, we show, using a model based on cubic charge distributions that gives exact results,
that the Coulomb repulsion energy of localized charge distributions is lower than that of delocalized
distributions in spite of the fact that the total overall charge distribution is the same. Assuming a
simple cubic geometry, we obtain an explicit result for the energy reduction. This reduction results
from the exclusion of self-interactions of the electrons. The corresponding results for electron pairs
are also discussed.

Keywords: Coulomb interaction energy; localized charge distributions; Wigner crystal; cubic charge
distributions; conduction electrons; electron pairs

1. Introduction

The Coulomb interaction may appear mathematically trivial, especially for point
particles, but as anyone who studies ionic crystals quickly learns, this is not necessarily the
case. Calculation of the Coulomb binding energy per ion in an ionic crystal, the Madelung
energy [1,2], is quite intricate. When it comes to electrons, it is intuitively obvious that since
they repel each other they should attempt to be as far apart as possible, as long as they can
compensate any positive charge density present. This holds for electrons on a sphere [3].
Wigner [4,5] realized that a thin electron gas should condense to a crystal with the electrons
localized at lattice points. Except for trapped charged particles in vacuum, it is, however, a
bit difficult to see how this is relevant in practice, and more specifically if it is relevant in
metals. Nevertheless numerical calculations based on theoretical models confirm Wigner’s
findings [6–8].

Most properties of metals and alloys were well understood already some decades
after the discovery of the Schrödinger equation and the Pauli exclusion principle (see Mott
and Jones [9] or Seitz [10]), superconductivity being an exception. Already the simplest
model, the free electron Fermi gas, with completely delocalized electrons, explains many
qualitative facts.

In molecular quantum mechanics the pros and cons of localized versus delocalized
orbitals were discussed [11,12]. In solid state physics [13], electrons were originally placed
in delocalized Bloch functions [14]. Later, Wannier [15] constructed localized functions
as linear combinations of Bloch functions, but these were mainly intended for insulators.
Long experience with solid state physics tells us that, to a reasonable approximation,
electrons move in delocalized orbitals that are linear combinations of atomic orbitals (see
e.g., Burdett [16] and Hoffman [17]).

Here, we show that this delocalization does not represent a minimum of the Coulomb
repulsion energy. The energy is in fact significantly lower for the localized case. It is
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therefore natural to assume that localization will occur at some (larger) length scale since
the physical electron orbitals normally are assumed to arise from some energy based
variational procedure. Previously Baranov and Kohout [18] and Otero de la Roza et al. [19]
investigated electron localization in solids. Historically Kronig [20,21] suggested that
superconductivity was caused by electron localization in the metal. Localized electrons in
metals have also been studied by Shih et al. [22,23]. Self-interaction errors can influence
calculation of these effects [24]. Here, we argue that localization is energetically favorable
for electron pairs. It would then be natural to guess that superconductivity results from the
Bose–Einstein condensation of such localized (nonoverlapping) electron pairs. A general
investigation of electron pairing can be found in Kohout [25].

Mathematically, our model compares the Coulomb energy of N3 electrons delocalized
in a cube of side-length L to the energy when these electrons are localized with one in
each of the N3 subcubes of side-length L/N. Some preliminary results, which also include
estimates of the kinetic energy, were reported by Essén [26]. Note that the overall electron
charge density is the same in both cases eN3/L3. Otherwise charge neutrality would be
violated. In our model the Coulomb repulsion energies can be calculated exactly, after
some preliminary results. Then, the same calculation is performed assuming 2N3 electron
pairs. All calculations assume over-all charge neutrality with a fixed positive background
charge density. A fixed electron density is also assumed when comparing results for single
electrons to electron pair results.

2. Coulomb Energy of Charge Distributions

The Coulomb interaction energy of two charged particles with charges e1 and e2 is
given by

EC =
e1e2

|r1 − r2|
(1)

where |r1 − r2| = r12 is the distance between the particles. For Ne charged particles the
interaction energy is the sum

EC =
Ne

∑
α<β

eαeβ

|rα − rβ|
=

1
2

Ne

∑
α

Ne

∑
β

′
eαeβ

|rα − rβ|
(2)

over the Ne(Ne − 1)/2 distinct pairs. Here, the prime on the second sum means that terms
with α = β are excluded.

Now assume that two charges are not located at points but distributed in charge
densities $1(r) and $2(r). The Coulomb interaction energy corresponding to (1) is then

EC =
1
2

∫ ∫
$1(r1)$2(r2)

|r1 − r2|
dV1dV2. (3)

The integrations must be extended over the regions where the charge densities are
nonzero. The factor of one half is there because the double integral corresponds to a double
sum. Denoting by dea = $a(r)dV, a = 1, 2 the infinitesimal charge in dV at r, we see that
the terms de1 de2/r12 and de2 de1/r21 of the double sum are both included though they in
fact represent the same interaction energy; hence, one half.

When there are Ne charge densities, $α(r), α = 1, . . . , Ne, the energy corresponding
to (2) is

EC =
Ne

∑
α<β

1
2

∫ ∫ $α(r1)$β(r2)

|r1 − r2|
dV1dV2. (4)

This is the energy expression needed in quantum chemistry and solid state physics.
For Ne densities the sum is again over Ne(Ne − 1)/2 terms. Such charge densities can be
assumed to be due to electrons in independent particle orbitals ψα(r). The density would
then be $α(r) = e ψ∗α(r)ψα(r).
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2.1. Cubic Charge Distributions

There are still many interesting problems worth considering involving the electrostatics
of cubic geometries. These have to do with cubic ionic crystals [2,27], with the force and
potential from cubic charge and mass distributions [28–31], and with the electric capacitance
of the cube [32,33]. Here, we will discuss the evaluation of the electrostatic interaction
energy of two coinciding homogeneous cubic charge distributions.

Now we study the implications of this interaction energy for conduction electrons in
a metal by means of cubic charge distributions. This simplification allows exact results
and one can imagine a cubic piece of metal which can be subdivided into smaller cubes
that cover the total volume. We note that the initial assumption in the most basic theory of
metals is that conduction electrons are completely delocalized over the entire metal. This
does not minimize the Coulomb interaction energy of the electrons as we show below. We
will also show that there is a preference, from the Coulomb interaction energy point of
view, for electrons to localize into pairs.

The Coulomb interaction energy of two charge densities, ρa = ea/L3, a = 1, 2, which
are constant in a cube of side-length L, is:

E12
C =

1
2

∫
V1

∫
V2

ρ1 dV1 ρ2 dV2

|r1 − r2|
=

e1e2

2L6

∫
V1

∫
V2

dV1 dV2

|r1 − r2|
, (5)

where ra = (xa, ya, za), and:

Va = {(xa, ya, za); 0< xa <L, 0< ya <L, 0< za <L }, a = 1, 2. (6)

A change of variables in the integral to xa = Lx′a, ya = Ly′a, za = Lz′a, a = 1, 2, leads
to ra = (xa, ya, za) = L(x′a, y′a, z′a), dVa = L3dV′a and we obtain:

E12
C =

e1e2

2L6

∫
V′1

∫
V′2

L3dV′1 L3dV′2
L|r′1 − r′2|

=
e1e2

2L

∫
V′1

∫
V′2

dV′1 dV′2
|r′1 − r′2|

, (7)

where:
V′a = {(x′a, y′a, z′a); 0< x′a <1, 0< y′a <1, 0< z′a <1 }, a = 1, 2 (8)

define cubes of unit side-length.
We found that the Coulomb interaction energy is given by:

E12
C =

1
2

e1e2

L
C0 (9)

where C0 is the dimensionless constant given by the 6D integral over unit cubes (8):

C0 =
∫

V1

∫
V2

dV1 dV2

|r1 − r2|
= (10)∫ x=1

x=0

∫ y=1

y=0

∫ z=1

z=0

∫ u=1

u=0

∫ v=1

v=0

∫ w=1

w=0

dx dy dz du dv dw√
(x−u)2 + (y−v)2 + (z−w)2

. (11)

The value of C0 can be calculated exactly, see Waldvogel [28], Seidov and Skvirsky [31],
with the result:

C0 = −2

{
2
√

3−
√

2− 1
5

+
π

3
+ ln

[
(
√

2− 1)(2−
√

3)
]}

, (12)

and this evaluates to:
C0 ≈ 1.8823126443896601600 (13)
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using 20 digits. Another expression for C0 in terms of a 1D integral was derived by Essén
and Nordmark [2]. Estimates and properties of this integral are further discussed in
Appendix A.

2.2. Subdividing the Cube

To evaluate the integral (10) and (11) numerically the unit cube (L = 1) can be divided
into small subcubes. To do this, we divide each cube into N3 subcubes (a = 1, 2, L = 1):

Vijk
aN1 =

{
(xa, ya, za);

i− 1
N

< xa <
i
N

,
j− 1

N
< ya <

j
N

,
k− 1

N
< za <

k
N

}
, (14)

where the indices, i, j, and k, run from 1 to N. Figure 1 illustrates a subdivision with N = 3.
Our integral can then be written as the double sum:

C0 =
N

∑
ijk=1

N

∑
lmn=1

Clmn
N,ijk, (15)

over N6 terms, integrals over pairs of subcubes:

Clmn
N,ijk =

∫
Vijk

1N1

∫
Vlmn

2N1

dV1 dV2

|r1 − r2|
. (16)

Results obtained from the subdivision and numerical estimates are given in Appendix A.

Figure 1. This figure shows a cube subdivided using N = 3 in (14). This leads to 33 = 27 subcubes
(as in Rubik’s cube).

2.3. Removing the Singular Terms

One notes that the double sum (15) consists of terms for which (i, j, k) = (l, m, n), i.e.,
double integrals over coinciding subcubes, plus terms with (i, j, k) 6= (l, m, n). This means
that we can write (15) as:

C0 =
N

∑
ijk=1

Cijk
N,ijk +

N

∑
ijk=1

N

∑
lmn=1

′

Clmn
N,ijk, (17)

where the terms with all three indices the same, (i, j, k) = (l, m, n), are excluded in the
double sum.

The first sum over coinciding subcubes consists of integrals that are all identical and
equal to:

CN = C111
N,111 =

∫
V111

1N1

∫
V111

2N1

dV1 dV2

|r1 − r2|
. (18)

From Equation (17), one thus obtains:

C0 = N3CN +
N

∑
ijk=1

N

∑
lmn=1

′

Clmn
N,ijk. (19)
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Apart from being over a smaller cube, the integral CN is essentially like the original
integral. In fact one easily finds the scaling property:

C0 = N5CN . (20)

Using this Equation (19) becomes:

C0 =
C0

N2 +
N

∑
ijk=1

N

∑
lmn=1

′

Clmn
N,ijk. (21)

Solving for C0, we thus finally have that:

Theorem 1.

C0 =
N2

N2 − 1

N

∑
ijk=1

N

∑
lmn=1

′

Clmn
N,ijk. (22)

The original integral (10) with its singularity can be expressed as a sum of N6 − N3 integrals
without (interior) singularities i.e., without self-interacting subcubes.

3. Coulomb Energy for Electrons in a Cube

Here, we give explicit expressions for the Coulomb energy of electrons in a cube; first
for delocalized electrons, then for electrons localized in subcubes.

3.1. Coulomb Energy for Delocalized Electrons in a Cube

We now assume that there are Ne = N3 electrons, all with constant charge densities
ρα = e/L3 in the cube of side-length L. The Coulomb electrostatic repulsion energy is then
according to (4) given by:

Edl
C =

N3

∑
α<β

1
2

∫
V1

∫
V2

(e/L3)(e/L3)

|r1 − r2|
dV1dV2 (23)

where V1 and V2 are given by (6). All terms in the sum are the same so we obtain:

Edl
C =

N3(N3 − 1)
2

1
2

e2

L6

∫
V1

∫
V2

dV1dV2

|r1 − r2|
. (24)

Repeating the calculations in (5)–(10) gives:

Edl
C =

N3(N3 − 1)
2

e2

2L
C0 (25)

for the relevant Coulomb energy. If we assume that these N3 electrons obey quantum
mechanics they cannot all be in the same orbital. Every pair of electrons must have different
kinetic energies so that the spin-orbitals are orthogonal.

3.2. Coulomb Energy for Electrons Localized in Sub-Cubes

We now assume that the cube (of side-length L) is subdivided into N3 subcubes Vijk
aNL

of side-length L/N. These subcubes are given by (14) if the ranges i−1
N < xa <

i
N , . . . are

replaced by i−1
N < xa/L < i

N , . . .. We assume that we have one electron in each of these
subcubes. The Coulomb energy is then according to (4):

Elc
C =

1
2

N

∑
ijk

N

∑
lmn

′
1
2

∫
Vijk

1NL

∫
Vlmn

2NL

[e/(L/N)3][e/(L/N)3]

|r1 − r2|
dV1dV2 (26)
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since the charge density in each subcube is ρijk = e/(L/N)3. Here the prime on the second
sum means that terms with (i, j, k) = (l, m, n) are excluded, as in Equation (22). The initial
factor of one half is there since the double sum includes every pair [(i, j, k), (l, m, n)] twice.
This gives:

Elc
C =

N

∑
ijk

N

∑
lmn

′
e2N6

4L6

∫
Vijk

1NL

∫
Vlmn

2NL

dV1dV2

|r1 − r2|
(27)

We now do the coordinate transformation we did in Equations (5)–(7) and obtain:

Elc
C =

N

∑
ijk

N

∑
lmn

′
e2N6

4L6

∫
V
′ ijk
1N1

∫
V′ lmn

2N1

L3dV′1 L3dV′2
L|r′1 − r′2|

(28)

Skipping the primes, this can now be written:

Elc
C =

e2N6

4L

N

∑
ijk

N

∑
lmn

′ ∫
Vijk

1N1

∫
Vlmn

2N1

dV1dV2

|r1 − r2|
. (29)

The integrals here are the ones given in (16), so we find:

Elc
C =

e2N6

4L

N

∑
ijk

N

∑
lmn

′

Clmn
N,ijk. (30)

Using Equation (22), we now obtain:

Elc
C =

e2N6

4L

(
N2 − 1

N2 C0

)
. (31)

To compare this to (25), we can write it as:

Elc
C =

N4(N2 − 1)
2

e2

2L
C0. (32)

This is thus our final result for the Coulomb energy of Ne = N3 electrons each with
constant charge density in one of the N3 subcubes. Note that the overall charge density
here, eN3/L3, is the same as in the delocalized case (25).

4. Coulomb Energy Difference

The calculations above are of course a bit technical, but the result is easy to understand:
the Coulomb repulsion energy is lower when the electrons are localized to different regions
of space. In the calculation for the localized case, the self-energies of the electrons are
excluded, and this is one of the differences in the two cases. The self-energies are also
excluded in the delocalized case but since all electrons are in the same charge distribution
most terms are in fact similar to self-interactions.

The energy difference between the two cases is according to (25) and (32):

Edl
C − Elc

C = [N3(N3 − 1)− N4(N2 − 1)]
e2

4L
C0 (33)

so we find:

∆Edl,lc
C = N3(N − 1)

e2

4L
C0 ≈ N4 e2

4L
C0. (34)

The last expression should be valid for macroscopic matter where one can assume that
N � 1.
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It is perhaps more illuminating to express this in terms of the density of the electrons
involved, ne = Ne/L3 = N3/L3. This gives:

∆Edl,lc
C ≈ n4/3

e
e2

4
C0L3. (35)

This quantity is seen to increase with electron density and with the volume V = L3 of
the cube, and we have:

∆Edl,lc
C

V
≈ n4/3

e
e2

4
C0, (36)

for the energy gain per volume.
The localized states always have lower electrostatic energy simply because in these

states, the electrons are better at avoiding each other. For small L-values the delocalized
states have lower energy because of kinetic energy and the uncertainty principle.

5. Localizing Electron Pairs

Let us use the above results and calculations to investigate the localization into electron
pairs. We then start by doubling the number of delocalized electrons in Section 3 to 2N3.
To keep the density of electrons constant we must then also double the volume L3 to 2L3,
i.e., change L to:

L′ = 3
√

2L ≈ 1.26L. (37)

From Equation (25), this gives us:

Edl
C2 =

2N3(2N3 − 1)
2

e2

2L′
C0 = N3(2N3 − 1)

e2

2L′
C0. (38)

The situation is illustrated for N = 2 to the left in Figure 2.

Figure 2. Left of this figure illustrates situation with 16 = 2× 23 electrons delocalized (constant
charge densities) in a cube; right side illustrates localization of these 16 electrons with 2 electrons in
each of 8 octant subcubes.

For the case of two electrons localized in each of the N3 subcubes, we can use the
calculations of Section 3.2. This situation is illustrated for N = 2 to the right in Figure 2. In
Equation (32), we must now increase the charge e to 2e since each subcube now has two
electrons. We must also add the repulsion energy within each of the N3 pairs. This gives an
additional contribution to the repulsion energy of:

Epr
C = N3 1

2
e2

L′/N
C0, (39)

since the two electrons of charge e in each of the N3 subcubes repel each other. These
subcubes now have side-length L′/N. So (32) with e→ 2e plus (39) gives us:

Elc
C2 =

N3(N3 − N)

2
(2e)2

2L′
C0 + N3 1

2
e2

L′/N
C0, (40)
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or simply

Elc
C2 = N4(2N2 − 1)

e2

2L′
C0. (41)

So, this is the repulsion energy when N electron pairs are localized to the N3 subcubes
of side-length L′.

The energy difference between (38) and (41) is now:

∆Edl,lc
C2 ≡ Edl

C2 − Elc
C2 = [N3(2N3 − 1)− N4(2N2 − 1)]

e2

2L′
C0 (42)

i.e.,

∆Edl,lc
C2 = N3(N − 1)

e2

2L′
C0 ≈ N4 e2

2.52L
C0. (43)

Comparing this with (34) we obtain:

∆Edl,lc
C2

∆Edl,lc
C

≈ 1.59 , (44)

so the energy reduction for pairs (maintaining the same overall electron density) is roughly
60% larger. This result is natural since electron pairs repel each other four times more
than electrons. This fact together with the Pauli principle makes electron pairing in metals
natural, without assuming an attractive force.

To obtain the pair localization energy gain per volume, we start from (43) and find:

∆Edl,lc
C2 ≈ N4 e2

2L′
C0 =

N3

L′3
N
L′

e2

2
C0L′3 = n4/3

e
e2

2
C0V. (45)

Comparing this to Equation (36), we see that the localization energy gain for pairs per
volume, ∆Edl,lc

C2 /V, is twice as big as for that of single electrons.

6. The Binding Energy of Pairs

Consider an electron delocalized in a cube of side-length L with a constant positive
charge density of |e|/L3. The Coulomb binding (or attractive) energy is then:

Ebind
C = −1

2
e2

L
C0, (46)

according to Equation (9).
Now, double the volume by changing L to L′ = 3

√
2L. Assuming constant charge

density the total positive charge in volume now becomes 2|e|. To maintain zero net charge
density, we assume that there are two electrons delocalized in this cube of volume 2L3. The
total Coulomb energy of this system is:

Ebind
C2 = −1

2
4e2

L′
C0 +

1
2

e2

L′
C0 = −1

2
3e2

L′
C0 ≈ −2.38

1
2

e2

L
C0. (47)

Comparing (47) with (46), we see that the pair binding energy is significantly larger
than that for a single electron, even when both the electron–electron repulsion and the larger
length scale are taken into account. Here, one can object that this is a trivial consequence
of the fact that the Coulomb interaction is quadratic in the charges and that the effect is
even bigger if triples of electrons are considered. In some sense this is true but the reason
to focus on pairs is that because of the Pauli principle one can have one or two electrons in
a given spatial state, but not more.

From the above findings, the Cooper pairs in superconductors may in fact be caused
by the same mechanism that produce Lewis pairs in quantum chemistry. These pairs were
pointed out by Gilbert N. Lewis in 1916 [34].
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7. Conclusions

The Coulomb interaction energy of two constant charge distributions in a cube was
written in terms of interactions between subcubes. Considering the constant charge distri-
butions as superpositions of distributions in subcubes, we find the difference between the
overall Coulomb interaction and its value without self-interactions within the subcubes.
This is of relevance to electron charge distributions since electrons do not self-interact.
We thus find exact results on the Coulomb energy gain due to localization of electrons or
electron pairs. Within our model, we thus find the Coulomb energy difference between a
free electron Fermi gas of delocalized electrons and a Wigner crystal of localized electrons.
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Appendix A. Subcube Division: Exact Results and Numerical Estimates for C0

Here we evaluate numerically C0 of the expression (22) by taking as much advantage
as possible of index symmetries. Each partial integral can be written as:

Clmn
N,ijk ≈

1
N5
√
(i− l)2 + (j−m)2 + (k− n)2

. (A1)

Denoting Cl,m,n
i,j,k = N5Clmn

N,ijk on account of (20), we have:

C0 =
1

N3(N2 − 1)

N

∑
ijk=1

N

∑
lmn=1

′

Clmn
ijk . (A2)

Among the N6 − N3 terms (having already precluded the singular terms), there are
still many repetitions that can be avoided. In fact, we can write:

C0 =
1

N3(N2 − 1)

(
6N2

N

∑
l<i

Cl,1,1
i,1,1 + 12N

N

∑
m<j

N

∑
n<k

C1,m,n
1,j,k + 8

N

∑
l<i

N

∑
m<j

N

∑
n<k

Cl,m,n
i,j,k

)
. (A3)

To unravel the expression, we first note that the factor 6N2 comes from the fact
that there are two similar sums of 3N2 different varieties, the factor 12N in front of the
double sum is due to four similar sums, each with 3N varieties, and the factor 8 from
the number of similar sums. The first sum contains N(N − 1)/2 terms, the double sum
contains N2(N − 1)2/22 terms, and the triple sum N3(N − 1)3/23 terms. Taken together,
the number of terms is:

6N2 N
2
(N − 1) + 12N

N2

4
(N − 1)2 + 8

N3

8
(N − 1)3 = N6 − N3, (A4)

as it should.
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It may be of interest to evaluate the few first cases exactly: for N = 2, illustrated to the
right in Figure 2, Equation (A3) gives:

C0 = Cf + Ce +
1
3

Cc (A5)

using the notation
Cf = C1,1,2

1,1,1 Ce = C1,2,2
1,1,1 Cc = C2,2,2

1,1,1 (A6)

for the integrals describing interaction between subcubes sharing a face, edge, and vertex
(corner), respectively, see Figure A1. Using (A1) we find that:

C0 ≈ 1 +
1√
2
+

1
3
√

3
, (A7)

or approximately 1.899556871.

e

c

f

Figure A1. This figure illustrates three cases of touching cubes for which integrand is singular on a
face, an edge, and a corner (vertex), respectively.

For N = 3, illustrated in Figure 1, the number of terms grows significantly.
Equation (A3) gives:

C0 =
1

216

(
54(2Cf + d0,0,2) + 36(4Ce + 4d0,1,2 + d0,2,2)

+8(8Cc + 12d1,1,2 + 6d1,2,2 + d2,2,2)

)
(A8)

employing the notation

d0,0,2 = C1,1,3
1,1,1 ≈

1√
4

, d0,1,2 = C1,2,3
1,1,1 ≈

1√
5

, d1,1,2 = C2,2,3
1,1,1 ≈

1√
6

, (A9)

d0,2,2 = C1,3,3
1,1,1 ≈

1√
8

, d1,2,2 = C2,3,3
1,1,1 ≈

1√
9

, d2,2,2 = C3,3,3
1,1,1 ≈

1√
12

. (A10)
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Here (A1) with N = 1 was used. Thus, we find that

C0 ≈
1

216

[
135 + 36

(
1

2
√

2
+ 2
√

2 +
4√
5

)
+ 8
(

2 +
17

2
√

3
+ 2
√

6
)]

(A11)

which is approximately 1.8907486597. In view of the exact value (13) the precision is
satisfactory. The relative error is approximately 5× 10−3. However in comparison to the
expression for N = 2 (A7), which represents a relative error of 9× 10−3, the improvement
is unimpressive.

Finally, we note that by means of the Equations (A5) and (A8) one can eliminate Cf,
which is singular on a contact surface, and obtain:

C0 =
1
3

Ce +
7
27

Cc +
1
2

d0,0,2 +
4
3

d0,1,2 +
8
9

d1,1,2 +
1
3

d0,2,2 +
4
9

d1,2,2 +
2

27
d2,2,2 (A12)

which gives C0 ≈ 1.881940448 with a relative error of only 2× 10−4.

References
1. Madelung, E. Das elektrische Feld in systemen von regelmässig angeordneten Punktladungen. Phys. Z. 1918, 19, 524–532.
2. Essén, H.; Nordmark, A.B. Some results on the electrostatic energy of ionic crystals. Can. J. Chem. 1996, 74, 885–891. [CrossRef]
3. Essén, H. The effective shell charge of electrons on a sphere: A discussion of Hund’s rules, negative ions and the chemical bond.

Theor. Chim. Acta 1983, 63, 365–376. [CrossRef]
4. Wigner, E. On the interaction of electrons in metals. Phys. Rev. 1934, 46, 1002–1011. [CrossRef]
5. Wigner, E. Effects of the electron interaction on the energy levels of electrons in metals. Trans. Faraday Soc. 1938, 34, 678–685.

[CrossRef]
6. Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569. [CrossRef]
7. Trail, J.R.; Towler, M.D.; Needs, R.J. Unrestricted Hartree-Fock theory of Wigner crystals. Phys. Rev. B 2003, 68, 045107. [CrossRef]
8. Drummond, N.D.; Radnai, Z.; Trail, J.R.; Towler, M.D.; Needs, R.J. Diffusion quantum monte carlo study of three-dimensional

Wigner crystals. Phys. Rev. B 2004, 69, 085116. [CrossRef]
9. Mott, N.F.; Jones, H. The Theory of the Properites of Metals and Alloys; Dover: New York, NY, USA, 1958.
10. Seitz, F. The Modern Theory of Solids; McGraw-Hill: New York, NY, USA, 1940.
11. McWeeny, R.; Sutcliffe, B.T. Methods of Molecular Quantum Mechanics; Academic Press: New York, NY, USA, 1969.
12. Chalvet, O.; Daudel, R.; Diner, S.; Malrieu, J.P. (Eds.) Localization and Delocalization in Quantum Chemistry—Volume I: Atoms and

Molecules in the Ground State; Springer: Berlin, Germany, 1975.
13. Madelung, O. Introduction to Solid State Theory; Springer: Berlin, Germany, 1978.
14. Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 1929, 52, 555–600. [CrossRef]
15. Wannier, G.H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 1937, 52, 191–197. [CrossRef]
16. Burdett, J.K. From bonds to bands and molecules to solids. Prog. Solid State Chem. 1984, 15, 173–255. [CrossRef]
17. Hoffmann, R. Solids and Surfaces—A Chemist’s View of Bonding in Extended Structures; VCH: New York, NY, USA, 1988.
18. Baranov, A.; Kohout, M. Electron localization and delocalization indices for solids. J. Comput. Chem. 2011, 32, 2064–2076.

[CrossRef] [PubMed]
19. Otero-de-la Roza, A.; Pendas, A.M.; Johnson, E.R. Quantitative electron delocalization in solids from maximally localized wannier

functions. J. Chem. Theory Comput. 2018, 14, 4699–4710. [CrossRef]
20. de L. Kronig, R. Zur Theorie der Supraleitfähigkeit. Z. Phys. 1932, 78, 744–750. [CrossRef]
21. de L. Kronig, R. Zur Theorie der Supraleitfähigkeit II. Z. Phys. 1933, 80, 203–216. [CrossRef]
22. Shih, B.-C.; Zhang, Y.; Zhang, W.; Zhang, P. Screened Coulomb interaction of localized electrons in solids from first principles.

Phys. Rev. B 2012, 85, 045132. [CrossRef]
23. Shih, B.-C.; Abtew, T.A.; Yuan, X.; Zhang, W.; Zhang, P. Screened Coulomb interactions of localized electrons in transition metals

and transition-metal oxides. Phys. Rev. B 2012, 86, 165124. [CrossRef]
24. Lundberg, M.; Siegbahn, P.E.M. Quantifying the effects of the self-interaction error in dft: When do the delocalized states appear?

J. Chem. Phys. 2005, 122, 224103. [CrossRef]
25. Kohout, M. Electron pairs in position space. In The Chemical Bond II. Structure and Bonding; Mingos, D., Ed.; Springer: Cham,

Switzerland, 2016; Volume 170, pp. 119–168.
26. Essén, H. Electrostatic interaction energies of homogeneous cubic charge distributions. arXiv 2007, arXiv:physics/0701215v1.
27. Moggia, E.; Bianco, B. Closed form expression for the potential within a face centred cubic ionic crystal. J. Electrost. 2004, 61,

269–280. [CrossRef]
28. Waldvogel, J. The Newtonian potential of a homogeneous cube. Zeitschr. Angew. Math. Phys. 1976, 27, 867–871. [CrossRef]
29. Chen, Y.T.; Cook, A. Gravitational Experiments in the Laboratory; Cambridge University Press: Cambridge, UK, 1993.

http://doi.org/10.1139/v96-097
http://dx.doi.org/10.1007/BF01151614
http://dx.doi.org/10.1103/PhysRev.46.1002
http://dx.doi.org/10.1039/tf9383400678
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevB.68.045107
http://dx.doi.org/10.1103/PhysRevB.69.085116
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1103/PhysRev.52.191
http://dx.doi.org/10.1016/0079-6786(84)90002-5
http://dx.doi.org/10.1002/jcc.21784
http://www.ncbi.nlm.nih.gov/pubmed/21538404
http://dx.doi.org/10.1021/acs.jctc.8b00549
http://dx.doi.org/10.1007/BF01342035
http://dx.doi.org/10.1007/BF02055910
http://dx.doi.org/10.1103/PhysRevB.85.045132
http://dx.doi.org/10.1103/PhysRevB.86.165124
http://dx.doi.org/10.1063/1.1926277
http://dx.doi.org/10.1016/j.elstat.2004.03.003
http://dx.doi.org/10.1007/BF01595137


AppliedMath 2022, 2 142

30. Hummer, G. Electrostatic potential of a homogeneously charged square and cube in two and three dimensions. J. Electrost. 1996,
36, 285–291. [CrossRef]

31. Seidov, Z.F.; Skvirsky, P.I. Gravitational potential and energy of homogeneous rectangular parallelepiped. arXiv 2000, arXiv:astro-
ph/0002496.

32. Reitan, D.K.; Higgins, T.J. Calculation of the electrical capacitance of a cube. J. Appl. Phys. 1951, 22, 223–226. [CrossRef]
33. Hwang, C.-O.; Mascagni, M. Electrical capacitance of the unit cube. J. Appl. Phys. 2004, 95, 3798–3802. [CrossRef]
34. Lewis, G.N. The atom and the molecule. J. Am. Chem. Soc. 1916, 38, 762–785. [CrossRef]

http://dx.doi.org/10.1016/0304-3886(95)00052-6
http://dx.doi.org/10.1063/1.1699929
http://dx.doi.org/10.1063/1.1664031
http://dx.doi.org/10.1021/ja02261a002

	Introduction
	Coulomb Energy of Charge Distributions
	Cubic Charge Distributions
	Subdividing the Cube
	Removing the Singular Terms

	Coulomb Energy for Electrons in a Cube
	Coulomb Energy for Delocalized Electrons in a Cube
	Coulomb Energy for Electrons Localized in Sub-Cubes

	Coulomb Energy Difference
	Localizing Electron Pairs
	The Binding Energy of Pairs
	Conclusions
	Appendix A
	References

