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Abstract: We design a simple technique to control the position of a localized matter wave. Our system
is composed of two counter-phased periodic potentials and a third optical lattice, which can be either
periodic or disordered. The only control needed on the system is a three-state switch that allows
the sudden selection of the desired potential. The method is proposed as a possible new alternative
to achieving the realization of a multi-state bit. We show that this framework is robust, and that
the multi-state bit behavior can be observed under weak assumptions. Given the current degree of
development of matter wave control in optical lattices, we believe that the proposed device would be
easily reproducible in a laboratory, allowing for testing and industrial applications.
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1. Introduction

Nowadays, Bose–Einstein condensates (BEC) [1–4] are routinely used in combination
with optical potentials to have direct access to the fundamental quantum behaviors on
a macroscopic scale. The state of the art offers a wide range of possibilities in terms of
manipulation over these systems [5–23], and there is a deep knowledge of the expected
behaviors from the theoretical side.

The dimensionality of the system can be reduced by flattening the BEC (effective
2D system [14]) or elongating it (effective 1D system [11–13]). In the 1D case, interesting
boundary conditions can be realized: the elongated BEC can be trapped in a box [15], in a
torus [24], or in a harmonic trap [9,10], among other possibilities [7,8].

Many different optical potentials are achievable for this system. Without any pre-
sumption of being exhaustive, we recall the possibility of generating both periodic [11–14]
and disordered [16–23,25–27] lattices. The latter family of potentials has been employed
to observe Anderson localization phenomena [16,17,21,22,27]. One-dimensional speckle
potentials, in particular, have been the object of an intensive study in recent years, both
from the theoretical and experimental sides. The localization properties of a speckle system
have been investigated both in infinitely extended [17,18] and box-bounded systems [26,27],
showing that the finite length case can have an even stronger degree of localization com-
pared to the infinite length case, under the proper conditions [27]. In addition to the
wide selection of feasible optical potentials, we recall the recent possibility of painting an
arbitrary shape time-averaged optical dipole potential [7].

Finally, the Fano–Feshbach resonances [28–30] can be employed to lessen or even
eliminate the nonlinear effects of the self-interaction, leading to the dynamics of the system
being ruled by a linear Schrödinger equation.

This remarkable degree of control over a quantum system allows for the research
of technological applications. In particular, investigations into using matter waves as
quantum switches or quantum information devices have been made in recent years [31–33].
This article proposes a general technique to employ a 1D BEC, either self-interacting or
not, as a multi-state bit, by a proper temporal alternation of three optical potentials. This
design is entirely new, to the best of our knowledge, and it is the first example of BEC used
as a classical multi-state bit. Indeed, unlike the other time-dependent optical potentials
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proposed to control atoms’ positions, this forces the localized wave function to follow a
cyclic sequence of configurations by repeating the same operation on the system, regardless
of the initial localization position. The proposed technique is robust and straightforward
and can be applied under a broad range of specifications, both in the box and the torus
cases. In addition, the number of states is an arbitrary choice.

Considering the complexity of the BEC’s self-interacting dynamics, no closed-form
result is proposed. Indeed, the investigation is purely numerical, and the chosen specifi-
cations cope with the features of a realistic system, easily reproducible in a laboratory at
present.

The paper is organized as follows. Section 2 defines the considered system and outlines
its general features. Section 3 discusses how the system can be employed as a multi-state
bit, given a simplified set of assumptions. The robustness of the system is investigated in
Section 4, where alternative implementations are compared, and an assumption previously
considered in Section 3 is weakened to investigate the system’s behavior in a more realistic
context. The main results of this work are summarized in Section 5.

2. Model and Methods

Let us consider a non-interacting matter wave in a 1D optical potential. The potential
can be selected amongst three possible choices. The system is finite and its length is L.
The hamiltonian of the system can be written in a dimensionless form as

Ĥ = − d2

dx2 +
3

∑
k=0

1I{k=c}vk(x, sk), (1)

where c ∈ {1, 2, 3} is a switch that allows the system’s user to select the potential. The three
selectable potentials vk (k = 1 . . . 3) are defined in the remainder of this section. We consider
also a zeroth case (k = 0) which is not selectable during the time evolution of the system,
but is needed to set the initial conditions. The Hamiltonian in Equation (1) is dimensionless
because it is scaled by a specific energy value Eξ , which is related to v1(x, s1) and introduced
together with it in Section 2.1.

It is reasonably assumed that c can be changed instantaneously, considering that
vk(x, sk) (k = 0 . . . 3) are optically generated. Numerical results that cope with this assump-
tion are presented in Section 3. When considering the time evolution and the presence of
self-interaction, the system is fully described by the Schrödinger equation:

i
∂

∂τ
ψ =

[
Ĥ + 2αβ

|ψ|2
σ2 + α

(
σ2 + σ−2

)]
ψ, (2)

where τ = Eξ t/h̄ is a scaled dimensionless time and σ2(x, τ) =
√

1 + β|ψ(x, τ)|2. α and
β are defined and fully specified in Appendix A. The nonlinear terms describe the self
interaction of the Bose–Einstein Condensate (BEC) that can be used in order to realize
the system. Equation (2) is an effective 1D model known as non-polynomial Schrödinger
equation (NPSE) [34]. This is obtained from the Gross–Pitaevskii 3D equation [35] in order
to provide an approximate description for the BEC dynamics under radial confinement.
Presently, the self interaction can be chosen to be repulsive (β > 0) [36,37], attractive
(β < 0) [28,29] or absent (β = 0) [30], depending on the experimental settings.

The remainder of this section completes the description of the system and is organized
as follows. Section 2.1 introduces the features of the optical potentials vk, k ∈ {0 . . . 3}
considered in Equations (1) and (2). Section 2.2 compares the instantaneous switch among
potentials to other finite-time alternate assumptions, the latter being numerically investi-
gated in Section 4. Section 2.3 introduces the observable quantities needed to assess the
system’s state. Finally, Section 2.4 discloses details regarding the numerical methods chosen
in simulating the system and its temporal evolution.
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2.1. Optical Potentials

The Hamiltonian Ĥ introduced in Equation (1) is specified by considering the poten-
tials described in the following.

(v1) The potential v1 is employed in order to keep |ψ(x, τ)|2 stable over time. To this end,
we consider two possibilities: a disodered potential vd

1 and a periodic potential vp
1 .

The disordered case. The potential is produced by generating an optical speckle vd
1(x) =

V0v(x/ξ), with intensity V0 =
〈

vd
1

〉
and autocorrelation length ξ [25,38]. The proba-

bility distribution of v(x) is e−v. Moreover, it holds that:

〈v(y)v(y + x)〉y = 1 + sinc2
(

x
ξ

)
. (3)

An optical speckle is obtained by transmitting a laser beam through a medium with
a random phase profile, such as a ground glass plate. The resulting complex electric
field is a sum of independent random variables and forms a Gaussian process. Atoms
experience a random potential proportional to the intensity of the field. V0 can be either
positive or negative, the potential resulting in a series of barriers or wells. However,
in both cases, it is possible to observe Anderson localization phenomena [26,27]. The
autocorrelation length ξ represents a natural scale for the system and Eξ := h̄2/2mξ2

is the corresponding energy scale. We define:

vd
1(x, s1) := s1v(x), (4)

where s1 = V0/Eξ is a rescaled dimensionless intensity. The speckle pattern can be
generated numerically as discussed in [25] (and references therein).
The ordered case. A smooth, periodic potential vp

1 (x, s1) can be used as well to maintain
|ψ(x, τ)|2 as stable over time, depending on the considered ψ(x, τ).

vp
1 (x, s1) := s1 f

(
mod

(
x,

∆
2

))
, (5)

where ∆ = L/N (N ∈ N), f (∆/2 + x) = f (∆/2 − x), and d f (x)/dx = 0 ⇔
mod(x, ∆/2) = 0. Adopting a common notation, mod(a, b) stands for the remainder
of a/b.
In Section 4, we consider vp

1 (x, s1) = s1cos( 4π
∆ x) as a realistic case.

(v2) v2 can be obtained from vp
1 by doubling the period and considering a different ampli-

tude s2, which is a parameter independent from s1.

v2(x, s2) := s2 f (mod(x, ∆)), (6)

where the same requirements described above hold. In Section 4, we consider v2(x, s1) =
s2cos( 2π

∆ x) as a realisitic case.
(v3) Additionally, the third potential is smooth and periodic, and in antiphase with

v2(x, s2):

v3(x, s3) := s3 f
(

mod(x, ∆) +
∆
2

)
. (7)

In the following, we will always consider s2 = s3 only.
(v0) The initial condition ψ(x, τ = 0) must be localized around x0 such that mod(x0, ∆) =

∆/4. This can be achieved by forcing the BEC to the ground state of a properly chosen
optical potential v0(x, s0). In Section 3, we consider:

v0(x, s0) := s0 cos
(

4π

∆
x
)
+ ω2

(
x− L

2
− ∆

4

)2
, (8)
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where ω2 is a constant, dimensioned as length−2, and valued as |L−1|.
In Section 3, we show that the system described above acts as a multi-state bit under

two alternative boundary conditions: box and torus.

2.2. The Instantaneous Potential Switch and Alternate Assumptions

In Sections 3 and 4.1, we discuss the multi-state bit behavior under the assumption
that the potential can be changed instantaneously. Let us consider a generic τ = τ0, when
the potential is changed from vcold to vcnew . Hence, we have:

Ĥ(τ) = − d2

dx2 + ∑k wk(τ)vk(x, sk),
wk(τ) = 1I{k=cold}Θ(τ0 − τ) + 1I{k=cnew}Θ(τ − τ0).

(9)

In Section 4.2, we investigate the effect of a non-instantaneous passage from one potential to
another, chosen amongst v1, v2, and v3. Given a finite-time switch lasting ε′, we represent
it as:

w(i)
k (τ) = 1I{k=cold} fi(τ0 − τ) + 1I{k=cnew} fi(τ − τ0) τ ∈

(
τ0 −

ε′

2
, τ0 +

ε′

2

)
. (10)

where i ∈ {1, 2, . . . , 6}. The considered switches are summarized in Table 1. This general-
ization of wk(τ) improves the realism of our framework and allows us to test the ability of
the system to preserve the density profile of the wave function that is localized in τ = 0.

Table 1. The non-instantaneous switches considered in Equation (10) as an alternate assumption to
Equation (9). In each transient plot, the red dashed line represents the temporal evolution of the
amplitude fi(τ0 − τ), associated to the cold-th optical potential, as it approaches to zero. Conversely,
blue solid lines represent the amplitude temporal profile fi(τ − τ0) of the cnew-th potential that is
being activated in τ0.

i fi(τ) Transient

1 τ+ε′/2
ε′

0

1

2 τ
ε′/2 Θ(τ)

0

1

3 eτ+ε′/2−1
eε′−1

0

1
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Table 1. Cont.

i fi(τ) Transient

4 eτ−1
eε′/2−1

Θ(τ)

0

1

5 1+tanh( 2τ
ε′ )

2

0

1

6 1+tanh( 4τ
ε′ )

2 Θ(τ)

0

1

The actual transient’s profile and duration would depend on the chosen hardware
specifications in a real experiment.

2.3. Measure of System’s State and Stability

As anticipated in Section 2.1, the system is designed to handle the position of a
localized matter wave ψ(x, τ). In this context, the position xloc is defined as the mode of
the density profile:

xloc(τ) := argmax
x∈[0,L]

|ψ(x, τ)|2. (11)

In Section 3, we describe a method to control the localization position xloc of the matter
wave ψ by changing the c value with proper timing. Hence, we are interested in preventing
the spatial expansion of ψ, in order to be able to measure xloc(τ) even for τ � 0. The par-
ticipation ratio (PR) is commonly used in the literature as a measure of the localization
degree [27,39]:

PR[ψ] =
1

L
∫

L dx|ψ(x)|4
. (12)

We introduce the following quantity DPR to compare the PR value measured during the
system’s evolution against the initial one:

DPR(τ) =
PR[ψ(x, τ)]

PR[ψ(x, 0)]
. (13)

The measure of xloc(τ) becomes more difficult and less precise at increasing DPR(τ) values.
In our system, xloc is clearly measurable when DPR . 10, while it cannot be defined nor
observed anymore when DPR & 20.

2.4. Numerical Methods

In the following, some technical details are disclosed regarding the numerical simula-
tions presented in this paper to ease their replicability.

The system is investigated through the numerical integration of Equation (2), given
the Hamiltonian specified by Equations (9) and (10), where the considered potentials are
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described in Section 2.1 and the temporal profiles of a non-instantaneous transient between
two subsequent potentials are displayed in Table 1.

The temporal evolution of the potential is chosen by the user, who is able to select
cτ at each instant τ (finite-time transients discussed in Section 2.2 aside). Thus, a matrix
v(x, τ) is prepared before starting the numerical integration to simulate the external inputs
that the matter wave receives by time.

The initial condition ψ(x, τ0) is chosen as the ground state of the potential v0(x),
which is obtained by the quantum imaginary time evolution technique (see, e.g., [40] and
references therein), as the Hamiltonian is interacting.

Given the deterministic potential evolution v(x, τ) and the initial condition ψ(x, τ0),
Equation (2) is integrated by applying one among three possible methods:

• in case the system is approximately non-interacting, the Crank–Nicolson [41] or the
midpoint [42] integration schemes are considered;

• in case the system is strongly self-interacting, the midpoint integration scheme is
still applicable, while the standard Crank–Nicolson scheme is replaced by a modified
version that is well defined also in the nonlinear case [43].

By comparing the results obtained from two alternative methods, both in the linear
and the nonlinear cases, we implicitly verify the absence of implementation errors that
could affect the simulations.

3. How to Use the System as a Multi-State Bit

A multi-state bit can assume a state chosen from a discrete and finite set. We can
conventionally define this set of states by partitioning the system into 2N = 2L/∆ intervals
and labeling each interval with a number n ∈ {1, . . . , 2N}. An example of the optical
potentials set {vk} (k = 0 . . . 3), needed to achieve the system in the case N = 5, is shown
in Figure 1. The potentials are applied according to the schema represented in Figure 2.

We need to perform three basic operations on our system in order to consider it a true
multi-state bit: writing information, keeping memory of it over an arbitrary time lapse, and
reading it again. The latter is introduced in Section 3.1, while the implementation of the
writing and storing operations is described in Section 3.2.

Figure 1. A possible specification of the system described in Section 2: N = 5 and s1 = s2 = s3 = 120.
From the top to the bottom: the potentials v2 (solid line) and v3 (dotted line); the speckle potential vd

1 ;
the periodic potential vp

1 ; the potential v0; the initial density profile |ψ(x, τ0)|2.
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3.1. Reading Information from the Position of a Localized Matter Wave

Using a matter wave allows us to measure the density profile directly. Since the
chosen initial condition of the system is a localized state ψ(x, τ0), most of the density is
concentrated in a small region. If DPR(τ) . 10 while the system evolves, we can associate
a number nj to every instant τ by measuring the density profile, with special reference to
the position xloc defined in Equation (11):

ϕR(ψ|τ) :=
2N

∑
j=1

nj1I{j−1≤ 2xloc(τ)
∆ <j

}. (14)

The definition reported above allows us to read the information stored in our system.
The underlying idea is simple. Indeed, the system’s domain (0, L) must be partitioned in
2N intervals, each of them being labeled with a natural number n. If xloc(τ) is included in
the j-th interval and the operator ϕR(·|τ) is applied, the system returns the value nj.

The convenient choice of nj depends on the boundary conditions. In case of box
boundary conditions, we choose:

nj =
j + 1

2
1I{mod(j,2)=1} +

(
2N − j

2
+ 1
)

1I{mod(j,2)=0}. (15)

In case of toroidal boundary conditions, we choose:

nj =
j + mod(j, 2)

2
. (16)

The reason for these choices is explained in Section 3.2.3. In our example (N = 5),
Equation (15) leads to:

n = (1, 10, 2, 9, 3, 8, 4, 7, 5, 6),

and Equation (16) leads to:

n = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5),

as shown in Figure 3.

3.2. Writing and Maintaining Information in the System

This section explains how to write information in the system (using operators ϕ+

and ϕ−) and how to store the information over a time lapse δ, keeping nτ constant (using
operator ϕδ).

As discussed in Section 2, the only way that we have to influence the system is
switching cτ from one value to another. We aim to use this possibility to define three actions
which affect the system as follows:

ϕR[ϕ+(ψ|τ)|τ + ε] = ϕR(ψ|τ) + 1, (17)

ϕR[ϕ−(ψ|τ)|τ + ε] = ϕR(ψ|τ)− 1, (18)

ϕR[ϕδ(ψ|τ)|τ + δ] = ϕR(ψ|τ), (19)

where ε is the time interval necessary to apply the operators ϕ±, and δ is a time interval
over which the information has to be stored in the system. As explained in Section 3.2.3,
the boundary conditions affect the definition of the ϕ+ and ϕ− operators. In case of box
conditions, we have:

ϕR[ϕ±(ψ|τ)|τ + ε] = mod[ϕR(ψ|τ)− 1± 1, 2N] + 1. (20)
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In case of toroidal conditions, we have:

ϕR[ϕ±(ψ|τ)|τ + ε] = mod[ϕR(ψ|τ)− 1± 1, N] + 1. (21)

The remainder of Section 3.2 is organized as follows. Section 3.2.1 defines the ϕδ operator,
and Section 3.2.2 introduces the ϕ+ and ϕ− operators. The ϕ± properties are further
investigated in Sections 3.2.3 and 3.2.4. The first highlights the different implications from
the two boundary conditions considered (i.e., box and torus), while the latter provides an
estimation of the time required to write information on the proposed device, depending on
the system’s specifications.

3.2.1. Definition of ϕδ

The definition of ϕδ(·|τ) is based on different principles in case we use vd
1 or vp

1 .
In case we use a disordered potential vd

1, it can cause the Anderson localization of
the system and it inhibits any transport phenomena. Hence, provided that the disordered
potential amplitude is big enough, any localized matter wave ψ(x, τ0) should remain
localized at the same position when observed in τ0 + δ.

In case we use a periodic potential vp
1 , it can inhibit any transport phenomena too,

provided that the localization point is exactly coincident with a local minimum of the
potential and the amplitude is big enough.

In both cases, we can define ϕδ as:

ϕδ(ψ|τ0) =
∫ L

0
ψy,τ0 K(y, x, τ0, τ0 + δ|cτ = 1)dy, (22)

where K(y, x, τ0, τ0 + δ) is the propagator associated with Equation (2). Figure 2 (first and
fourth panels) provides a graphical explanation of φδ when using vp

1 .

3.2.2. Definition of ϕ±

The definition of ϕ±(·|τ) is based on the fact that a localized matter wave can experi-
ence a periodic potential as the single well where the mass is concentrated, provided that
the potential amplitude is big enough and that xloc is near enough to the local minimum
xmin of the potential. In case of a symmetric well, the symmetry of the eigenstates is well
defined and there is a time interval ε/2, after which it holds that:

ψ
(

x, τ +
ε

2

)
' ψ(x + 2(xmin − xloc), τ). (23)

Let us suppose that:

xloc(τ) = xmin −
∆
4
− δx with δx � ∆. (24)

From Equation (23), we have:

xloc

(
τ +

ε

2

)
= 2xmin − xloc(τ) = xmin +

∆
4
+ δx. (25)

Applying an instantaneous π phase shift to the periodic potential leads to a displacement
of the local minimum xmin → x′min = xmin + ∆/2. Now, we have:

xloc

(
τ +

ε

2

)
= x′min −

∆
4
+ δx, (26)

and after one more ε/2 time lapse, we obtain:

xloc(τ + ε) = 2x′min − xloc

(
τ +

ε

2

)
= xloc(τ) + ∆. (27)
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So, we make the localized matter wave travel a distance ∆ by applying two periodic
potentials in anti-phase and with big amplitude. In Section 4, we investigate the conditions
under which this displacement can be iterated, preventing DPR(τ) from rising beyond an
acceptable level. The discussion above leads to a definition of ϕ±:

ϕ±(ψ|τ0) :=
∫ L

0
ψy,τ0 K

(
y, x, τ0, τ0 + δ|cτ = c±τ

)
dy, (28)

c+τ = 2 · 1I{τ∈[τ0,τ0+
ε
2 ]} + 3 · 1I{τ∈[τ0+

ε
2 ,τ0+ε]},

c−τ = 3 · 1I{τ∈[τ0,τ0+
ε
2 ]} + 2 · 1I{τ∈[τ0+

ε
2 ,τ0+ε]}.

Figure 2 (central panels) gives a graphical explanation of φ+.

3.2.3. ϕ± Near to the Boundaries

The periodic potential in the torus is translation invariant with respect to the transfor-
mation x 7→ x± ∆. This implies that the mechanism described in Section 3.2.2 holds in any
portion of the system in the same way. This leads to Equation (21). Equation (16) originates
from the fact that xloc can be moved only by ∆ long steps, and so there are only N allowed
positions where xloc can be found, as shown in Figure 3 (right panel).

On the other hand, the box boundary condition has no translation invariance and the
localized matter wave is reflected by the infinite potential walls. As shown in Figure 3, xloc
is shifted by ∆/2 near to the boundaries, because xloc(τ/2) = xloc(τ). This fact implies that
there are 2N allowed positions where xloc can be found. We can enumerate these positions
in the order that we obtain them by an iterative application of the φ+(·|τ) operator to
ψx,τ0 . The resulting order is described by Equation (15). An example is shown in Figure 3
(left panel).

c=1 c=2 c=3 c=1

Figure 2. Graphical explanation of the effects described in Sections 3.2.1 and 3.2.2. The proper timing
for alternating the three selectable potentials causes the localized matter wave to move and then
maintain the new xloc.
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Figure 3. Density plot of |ψ(x, τ)|2, using the specifications shown in Figure 1 (periodic case vp
1 ). We

applied ϕδ ◦ ϕ+ ten times, considering a different random δ value per application. The same pattern
is simulated considering both box (left panel) and boundary (right panel) conditions.

3.2.4. Time Scale of Writing Operations

As the presented system is proposed for practical purposes, it is relevant to investigate
the time scale ε required for performing each ϕ± operation. To estimate the analytical
dependency of ε in (28) from the other variables that describe the system, two approxi-
mations are required. First, we have to neglect the non-linear contribution of the matter
wave’s self-interaction. This is reasonable, as it mainly affects the degree of localization that
the matter wave experiences during its motion, while we are interested in estimating the
oscillation period of ψx,τ given the presence of the optical potential v2(x) or v3(x). Further,
while applying ϕ±, the matter wave’s center of mass oscillates about a local minimum
x′ of the active potential vc(x) (c = 2, 3) during a time interval lasting ε/2—that is, a
half-oscillation period. If we apply a 2nd-order approximation to vc(x− x′) (c = 2, 3), each
half-oscillation can be regarded as part of a simple harmonic motion. Namely, restoring the
S.I. units’ representation by multiplying back the dimensionless potential by the energy
scale Eξ , we have:

vc(x− x′) = Eξ sc cos
(

4π
∆ (x− x′)

)
≈ 8Eξ sc

π2(x− x′)2

∆2

≡ 1
2

mω2(x− x′)2,

where c = 2, 3 and the constant terms are omitted, as they are not relevant to the consid-
ered problem.

Since a coherent state (such as a non-interacting matter wave) in a harmonic potential
behaves as a classical particle with a good degree of approximation, the oscillation period
can be estimated as:

ε ≈ 2π

ω
=

m∆ξ

h̄
√

2sc
. (29)

Equation (29) shows how the operating time scale ε can be easily controlled by tuning the
parameters Na, sc, and ∆, such that the system’s user is able to decide when constructing
the experimental setup. Namely, a lesser mass m of the Bose–Einstein condensate, or a
greater amplitude sc or a smaller spatial period ∆ of the optical potential, implies a smaller
ε, that is, faster writing operations.
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Table 2 reports the estimated time scale ε given three feasible experimental specifica-
tions. Our numerical simulations are in good agreement with the approximated results
displayed in the table. It is worth noticing that ε is not directly comparable with the
corresponding time required to update a ferromagnetic bit, as an arbitrary number of bits
must be accessed to increment a generic natural number, depending on its value. On the
other hand, a multi-state bit enables representations that are different from the base-2
numeral system.

Table 2. Examples of time scale ε evaluated through approximation (29) under different experimen-
tal settings.

Na (39K Atoms) ∆ [µm] sc (1) ε (s)

104 30 90 ∼1.2× 101

102 6 200 ∼1.8× 10−2

101 3 400 ∼3.3× 10−4

4. Stability and Robustness of the Multi-State Bit

In this section, we verify the possibility of the system to be used as a multi-state
bit under different parameter choices. We compare the results using DPR, defined in
Section 2.3. The section aims to identify a stable multi-bit example that can also be feasible
in the laboratory.

4.1. Multi-State Bit under Various Settings

We have compared the two considered potential choices vd
1 and vp

1 , using them to store
information in the system. In case we choose to maintain cτ = 1 constant, both of them are
equally good at keeping the matter wave localized over time. vp

1 turns out to be better than
vd

1 when φ± is applied repeatedly to the system. This is the case when we want to write
information to be stored in the system. A numerical example is reported in Figure 4.
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Figure 4. Time evolution of four different versions of the multi-state bit system under the same
pattern used in Figure 3. Each row depicts the initial density profile |ψ(x, τ = 0)|2 (left panels),
the time evolution of the system in terms of DPR (τ ∈ (0, 13.4), central panels), and the final density
profile |ψ(x, τ = 13.4)|2 obtained (right panels). Both the periodic case (vp

1 , 1st and 2nd rows) and
the disordered case (vs

1, 3rd and 4th rows) are displayed. Simulations depicted in the 1st and the
3rd rows are performed considering a non-self-interacting condensate (α = β = 0), while results
in the 2nd and 4th rows are obtained by simulating a self-attracting condensate (α = 0.01 and
β = −15). All the simulations share the following specifications: N = 5; ai = 120 (i = 0, . . . , 3); box
boundary conditions.

When using vd
1, |s1|must be big enough to keep ψ(x, τ) localized over time, but not

big enough to cause fragmentation phenomena. If the matter wave is fragmented, DPR
increases when ψ(x, τ) is forced to oscillate (ct > 1). Figure 5 (left panel) shows an example
of an optimal level of |s1| when using vd

1. On the other hand, when using vp
1 , s1 can be

chosen arbitrarily high without fragmenting the matter wave. This is the reason why vp
1

leads to a more stable multi-bit behavior than vd
1.

When considering self-interaction, we observed an increased stability (lower DPR
over time) when choosing β < 0, especially if using vp

1 (see Figure 4). Intuitively, β > 0
decreases the stability of the system.

Moreover, all the potential amplitudes must be higher at increasing N values in order
to keep ψ(x, τ) confined in a local fluctuation of the potential when the total number
of fluctuations N is bigger. An example of this fact is shown in Figure 5 (right panel).
Considering these results, a feasible experimental setting that allows observing a stable ten-
states multi-bit could be the following: 39K elongated BEC (104 atoms) under box boundary
conditions; system dimensions 300 µm × 30 µm; periodic vp

1 potential; s1 = s2 = s3 ≥ 90;
N = 5. Please see Appendix A (and references therein) for further details.
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Figure 5. (Left): DPR[ψ] after five applications of ϕδ ◦ ϕ+ (N = 7; disordered potential vd
1 ; α = β = 0).

Darker areas corresponds to lower DPR values. (Right): final DPR after the evolution of the system
(α = β = 0; box boundary conditions; periodic case vp

1 ) using the same pattern described in Figure 3
and applied also in Figure 4. We tested N, ranging from 5 (circles) to 7 (squares), and s0 = s1 = s2,
ranging from 35 to 120.

4.2. Multi-State Bit Stability against Potential Imperfections

In Section 4.1, we have found that experimentally feasible multi-state bits are possible
under the assumption of instantaneous potential switching. In this section, we discuss
how a finite time switch can affect the stability of the system, depending on its duration
ε′. We restrict ourselves to considering a specific parameter setting which is stable in case
ε′ = 0: α = 0.01; β = −15; N = 5; s1 = s2 = s3 = 120. The time evolution of this system
was simulated together with each of the switch shapes defined in Section 2.2, in order to
find out to what extent the system remains stable at increasing ε′

ε values. The considered
evolution path is:

ψ(x, T) =©10
k=1 ϕδk ◦ ϕ+[ψ(x, 0)], (30)

where the evolution time is T = ∑k δk + 10ε + 30ε′. The first term ∑k δk measures the total
amount of time throughout which information is stored in the system. The intervals δk
between the next two writing operations ϕ+ have a random duration, under the boundary
∑k δk = 50ε. The second term 10ε is the total duration of the ten writing operations,
except for the finite time switches contribution, which is considered in the third term 30ε′.
We measure

〈
DPR

[
ψ(x, T)|w(i), ε′

]〉
for all the considered switch shapes (i = 1 . . . 6) and

with different switch durations ( ε′
ε ∈ [10−3, 2× 10−2]). 〈·〉 is the average over the random

paths {δ1, . . . , δ10}. The resulting
〈

DPR
(

w(i), ε′
ε

)〉
are shown in Figure 6. If ε′

ε . 10−2,
the system remains stable regardless of the chosen switch shape. Otherwise, the system
stability depends on the switch shape.
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〈

DPR
(

w(i), ε′

ε

)〉
using the switch shape represented in the corresponding

panel of the left picture.

5. Summary

We have developed a technique to change and preserve the position of a localized
matter wave. This behavior is directly applicable to obtaining a multi-state memory
device. This system can be built using optical potentials already available in the laboratory.
The multi-bit behavior can be observed under multiple parameter choices, and we have
suggested a fully specified multi-bit that could be realized at present. Given that BECs and
optical potentials are currently investigated from a quantum information perspective, this
work opens the possibility of turning the same BEC from a q-bit into a classical multi-state
bit, and vice versa, in the future.
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Appendix A. 1D NPSE in Our Units

We consider the 1D NPSE equation [34], which describes the dynamics of an elongated
BEC:

ih̄
∂

∂t
ψ =

[
− h̄2

2m
∂2

∂x2 + V +
gNa

2πa⊥

|ψ|2√
1 + 2asNa|ψ|2

(A1)

+
h̄ω⊥

2

(
1√

1 + 2asNa|ψ|2
+
√

1 + 2asNa|ψ|2
)]

ψ,
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with a⊥ =
√

h̄
mω⊥

and g = 4πh̄2as
m . Let us introduce the following quantities:

τ :=
Eξ t
h̄

, (A2)

α :=
h̄ω⊥

2
1

Eξ
=

ξ2

a2
⊥

, (A3)

β := 2asNa. (A4)

Moreover, it holds that:

gNa

2πa⊥

1
Eξ

=
4πh̄2as

m
Na

2πa⊥

2mξ2

h̄2 = 2αβ. (A5)

Multiplying Equation (A2) by 1
Eξ

, replacing Equations (A2)–(A5) and choosing ξ = 1 as the
spatial unit, we have:

i
∂

∂τ
ψ =

[
− ∂2

∂x2 + v + α

(
2β|ψ|2 + 1√

1 + β|ψ|2
+
√

1 + β|ψ|2
)]

ψ. (A6)

We simulate a 39K condensate with tunable attractive interactions. The following parameter
values are accessible to the experiments (see [23,30] amongst others): ξ ' 1 µm, Na ' 104,
and L ' 300ξ, a⊥ ' 30ξ, 0 ≥ as & −7.5× 10−4ξ. This leads to α ' 10−2 and β ∈ [−15, 0]ξ.
It is worth remarking that even Na . 10 has been accessible to the experiments [44–46] for
more than 20 years.
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