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Abstract: An ongoing challenge in neural information processing is the following question: how do
neurons adjust their connectivity to improve network-level task performance over time (i.e., actualize
learning)? It is widely believed that there is a consistent, synaptic-level learning mechanism in specific
brain regions, such as the basal ganglia, that actualizes learning. However, the exact nature of this
mechanism remains unclear. Here, we investigate the use of universal synaptic-level algorithms in
training connectionist models. Specifically, we propose an algorithm based on reinforcement learning
(RL) to generate and apply a simple biologically-inspired synaptic-level learning policy for neural
networks. In this algorithm, the action space for each synapse in the network consists of a small
increase, decrease, or null action on the connection strength. To test our algorithm, we applied it
to a multilayer perceptron (MLP) neural network model. This algorithm yields a static synaptic
learning policy that enables the simultaneous training of over 20,000 parameters (i.e., synapses)
and consistent learning convergence when applied to simulated decision boundary matching and
optical character recognition tasks. The trained networks yield character-recognition performance
comparable to identically shaped networks trained with gradient descent. The approach has two
significant advantages in comparison to traditional gradient-descent-based optimization methods.
First, the robustness of our novel method and its lack of reliance on gradient computations opens the
door to new techniques for training difficult-to-differentiate artificial neural networks, such as spiking
neural networks (SNNs) and recurrent neural networks (RNNs). Second, the method’s simplicity
provides a unique opportunity for further development of local information-driven multiagent
connectionist models for machine intelligence analogous to cellular automata.

Keywords: credit assignment; learning rules; neural network training; reinforcement learning (RL);
multi-agent reinforcement learning

1. Introduction

Understanding how biological neurons in the brain adjust their connectivity to actual-
ize learning has major consequences for neuroscience and machine learning (ML) alike [1,2].
In neuroscience, it would improve the understanding of fundamental requirements for
effective neural computation [3–5]. For ML, it would inform alternative neural network
training methods to traditional gradient descent and backpropagation methods [6,7]. How-
ever, this problem has proven challenging when investigated via analysis and modelling of
biological neuron behavior as well as via the generation of computational models of more
abstracted connectionist systems [8–11]. Here, we briefly introduce efforts to date from
biologically and computationally motivated lines of research in this problem.

Biologically motivated neuroscientific studies in this research area frequently focus
on pathways between the cortex, basal ganglia, and thalamus (known as CBGT path-
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ways) [12,13]. It is understood that this brain region is deeply involved with action selection
in decision-making tasks, and that connectivity adjusts over time to maximize a dopamin-
ergic reward signal [5,14,15]. The major unanswered question on the mechanism behind
this phenomena is: how is “credit” assigned to any one neuron or synapse in order to in-
form subsequent adjustments in connectivity [4]? Since the reward signal, action selection,
and pathway connectivity changes are spatially and temporally distant from each other,
researchers have struggled to find an effective, cohesive solution to this credit-assignment
problem. Studies are further complicated by the difficulty of simulating large networks
of biologically realistic neuron models [16]. Over time, research in this area has broadly
converged to the hypothesis that some consistent synaptic-level RL algorithm is employed
in these brain regions to actualize learning [4,5,15,17].

Computationally-motivated studies on abstracted connectionist models in this area
apply RL or related techniques to train neural network models [8–11]. Within these studies,
neurons are generally framed as RL agents in a partially observable Markov decision
process (POMDP) with a reward signal based on network performance on a task. The works
differ in terms of their formulation of the agents’ state spaces, and reward schemas [8] to
incentivize biological realism. However, key issues were observed in the art that either place
the “weight” of the learning task’s challenge on existing non-biologically feasible techniques
and/or misformulate each neuron’s action space. For example, ref. [8] models each neuron
as a deep Q-learning neural network optimized using gradient descent (policy gradient)
methods [18,19]. Both [8,10] also frame the action space for each neuron as “fire” or “not fire”
rather than as a set of actions to alter synaptic connectivity, an approach that is unsupported
by the neuroscientific and modern machine learning literature. Meanwhile, [8–11] all train
separate policies for each neuron/weight rather than training the same policy to be applied
by all synapses, as suggested by the neuroscientific literature discussed above [4,5,14,15]. In
general, moderate success in network training was achieved in these computational works.

We propose an algorithm wherein a universal synaptic-level reinforcement learning
policy is trained to optimize a network-level reward signal. The same policy and reward
signal is applied at each synapse, and each synapse’s state consists of locally available
information (in this case, previous actions and rewards). The key design changes introduced
in this work are as follows:

1. Frame the fundamental RL agent as the synapse rather than the neuron.
2. Train and apply the same synaptic RL policy on all synapses.
3. Set the action space for each synapse to consist of a small increment, a small decrement,

and null action on the synapse weight.
4. Represent synapse state as the last n synapse actions and rewards.
5. Use a universal binary reward at each time step representing whether MLP training

loss increased or decreased between the two-most-recent iterations.

The biological feasibility of the learning rule is increased through this formulation.
Per change (1,3), there is a large body of neuroscientific evidence to suggest that changes
in synaptic connectivity governs learning [5,15,20,21], not a neuron-specific “fire/not fire”
policy. While the literature suggests a larger and potentially more complicated synapse
state space [4], reward signals and previous adjustments are within the realm of biological
feasibility as they rely on local information and a very short memory buffer [22,23]. This
formulation also makes the problem computationally and statistically feasible, particularly
for large networks. Training and applying the same synaptic policy for all synapses
provides more data to inform the single policy which leads to higher chance of convergence
and lower chance of overfitting for a given policy form [19,24]. Choosing the synapse as
the fundamental reinforcement learning agent also simplifies the action space as biological
neurons can have thousands of synapses [25], and MLPs trained on standard tasks such as
optical character recognition can have an arbitrarily high number of synapses per neuron
depending on the hidden layer(s) size. A naïve approach for updating neuron connectivity
would yield an action space for each neuron with dimensionality on the same order as the
layer size.
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We find that this simple formulation enables surprisingly effective MLP training,
particularly when a static (learned) synaptic learning policy is applied. This static policy
enables the simultaneous training of over 20,000 parameters and consistently converged
for random decision-boundary matching and optical character-recognition tasks on the
notMNIST dataset [26]. The learned networks also produce character-recognition perfor-
mance on par with identically shaped networks trained with gradient descent. Indeed, 0
and 32 hidden-unit OCR MLPs were trained five times using both the proposed synaptic
RL method and gradient descent. The 0 hidden-unit synaptic RL-trained MLP yielded a
mean final validation accuracy of 88.28 ± 0.41% while the 0 hidden-unit gradient descent-
trained MLPs yielded 86.42 ± 0.22% final validation accuracy. The 32 hidden-unit synaptic
RL-trained MLP had mean validation accuracy of 88.45 ± 0.6% while the 32 hidden-unit
gradient descent-trained MLP had 89.56 ± 0.52% mean validation accuracy.

2. Materials and Methods

We propose a reinforcement-learning method that can be applied to the generation of a
synaptic-level policy for training MLPs. While MLPs pale in comparison to the complexity
of biological neuronal networks, they offer an easily simulated abstract connectionist
model that shares some high-level properties with biological neurons [27]. The form of
the proposed synaptic-level learning algorithm is informed by several hypotheses about
biological neurons. Since biological neurons are single cells with limited computational
capacity [28], we hypothesize that each synapse in a biological neural network applies a
relatively simple policy to adjust its connectivity over time. This policy takes into account
information including global reward signals (e.g., dopaminergic signals) and the synapse’s
own past changes in connectivity to inform subsequent changes in connectivity. We suspect
that the policy applied by each synapse is roughly the same in a given brain region, and that
differences in behaviour and connectivity arise from differences in local information, not
from the application of an entirely different policy. This policy results in the maximization
of a reward signal over time.

Given these hypotheses, we frame the problem as a POMDP with synapses as the
fundamental reinforcement learning (RL) agents. In this work, we apply the temporal
difference learning update equations to learn the Q-function for training the synapses of
MLP neural networks. We test the applicability and generalizability of this method on
simulated data and optical character recognition tasks.

Multilayer perceptron notation from [29] is followed in this work.

2.1. Synaptic Reinforcement Learning

Gradient-based approaches for inferring MLP parameters ~w(i,j) require propagation of
error signals backward throughout the network and are not observed in biological neural
networks [2]. We frame this problem as a multiagent RL problem in a POMDP as follows:
Each synapse is treated as an RL agent that executes the same policy. This policy maps
synapse state to actions (i.e., to alter the synapse weight). The temporal difference update
equation is applied to deduce the Q-function such that total reward is maximized over
time [19,24].

At discrete time steps, we define the following for the proposed synaptic RL model:

1. Actions: Each synapse can either increment, decrement, or maintain its value by some
small synaptic learning rate αs > 0.

at ∈ A = {−αs, 0,+αs} (1)

Weight update for a given synapse k in neuron i and layer j is thus given as:

w(i,j)
k ← w(i,j)

k + w(i,j)
k .at (2)
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2. Reward: Reward is defined in terms of the training loss at the previous two time steps.
Decreased loss is rewarded while increased or equivalent loss is penalized.

Rt = sign(Lt−1 −Lt)

=

{
+1 if Lt−1 > Lt

−1 if Lt−1 ≤ Lt

(3)

3. State: Each synapse w(i,j)
k “remembers” its previous actions and the previous two

global network rewards.

w(i,j)
k .st = {at−1, at−2, Rt−1, Rt−2, . . . } (4)

In this work, the previous two action-and-reward pairs were used as the synapse state
after empirical testing.

4. Policy: The Q function gives the expected total reward of a given state–action pair
(st, a) assuming that all future actions correspond to the highest Q-value for the given
future state [24]. The epsilon-greedy synaptic policy π(st) returns the action a ∈ A
with the highest Q-value with probability (1− ε). Otherwise, a random action is
returned [19]. The epsilon-greedy method was selected to add stochasticity to the
system, a property that appears to benefit biological information processing [30,31].

Q(st, a) = Rt + γ max
a′

Q(st+1, a′)

π(st) =

{
arg maxa∈A Q(st, a) with Pr = 1− ε

random-uniform(a ∈ A) with Pr = ε

(5)

where γ ∈ [0, 1] is the discount for future reward and ε ∈ [0, 1] is the “exploration
probability” of the policy. If the Q function is accurate, then π(st) will return the
optimal action a∗t subject to discount factor γ. Since the state and action spaces in this
formulation have low dimensionality, the Q function (and by extension the policy π)
can be implemented as lookup tables of finite size.

2.2. Training

In this study, Q-value learning is generally a two-fold process where neural network
parameters ~w are trained at the same time as the Q function and, by extension, policy π.
After a policy π has been generated, it can also be applied statically. During policy training,
the Q-values are updated using the following temporal difference learning update equation
for Q-learning [19]:

Q(st, at)← Q(st, at) + αq[Rt + γ max
a′

Q(st+1, a′)−Q(st, at)] (6)

where αq > 0 is the Q-learning rate. The training pseudocode is detailed in Algorithm 1
with links to the source code for the experiments in Supplementary Materials.
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Algorithm 1: Synaptic RL Training Algorithm.

Input : Q function, dataset (X, Y), iterations, ε, αs, αq, γ, MLP NET, boolean
Train-Policy

Output : Q function, updated NET

old-loss← L(Y, NET(X));
for t = 1 . . . iterations do

for each synapse w in NET do
w.at ← π(w.st);
w← w + w.at;

end
new-loss← L(Y, NET(X));
Rt ← sign(old-loss− new-loss);
Update each w.s with new global reward Rt;
if Train-Policy then

for each synapse w in NET do
Apply temporal difference update equation (7) to update Q using w.st,

w.at, w.st−1, w.at−1, and Rt.
end

end
end
return Q, NET

3. Results

To determine the efficacy of the proposed synaptic RL technique for MLP training,
learning tasks of increasing complexity and dimensionality are employed, starting with
random 2D decision-boundary matching. Once a static synaptic learning policy is trained
on this task, it is reapplied to a different decision-boundary task as well as optical character
recognition tasks with different network shapes and activation functions.

MLP binary classification matching on R2:

Nonlinear 2D decision boundaries are generated by randomly instantiating MLPs with
two input neurons, 100 hidden units, and one output neuron. If the output neuron produces
a value greater than zero, the point is classified in the positive class, and vice versa. Synapse
weights for the “target” MLP are uniformly sampled in the range [−1, 1] and bias terms are
set to 0. Data vector values are uniformly sampled in the range [−10, 10]. 2000 data vectors
are used in training. The goal of this matching task is to train another MLP of the same
size to produce the same classifications as the “target” MLP on the random data vectors
(i.e., match the decision boundary). Two experiments are highlighted in Figures 1 and 2.
Figure 1 shows results from simultaneous policy and network training while Figure 2 shows
results from applying the policy learned in Figure 1 to a new decision-boundary-matching
problem. All hyperparameters are consistent between the two experiments.

When the synaptic RL policy was trained simultaneously with the network, conver-
gence reliably occurred within 10,000 iterations (Figure 1). When a static synaptic RL policy
from an MLP matching task was reapplied, convergence occurred slightly more quickly
and smoothly (Figure 2).

Optical character recognition on the notMNIST dataset:

The notMNIST dataset [26] is composed of 10 classes of 28 × 28 greyscale images of
typeset characters in a variety of fonts. There are 18,720 labeled images in the dataset, and
one-hot encoding [29] is used for the training labels. Cross entropy loss [32] and ReLU
activation functions [33] are used for all trials, and a 75–25% randomized train-validation
split is used for each experiment. Networks with 0 and 32 hidden units are trained using
both the proposed synaptic RL method and with gradient descent. Hyperparameters for
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both training methods are manually tuned. The static policy generated in Figure 1 is applied
in all synaptic RL OCR trials. All experiments are run five times with validation accuracy
statistics shown in Table 1. The estimated runtime for each individual experiment run,
along with the number of trainable parameters, is reported in Table 1 as well. Experiments
are run on an AMD Ryzen 95,900 × 4th generation processor.

Table 1. notMNIST OCR validation accuracy comparison.

Experiment Min Max Mean Stdev Est. Runtime Params

Syn. RL 32 HU 87.88% 89.12% 88.45% 0.60% 5.5 h 25,450
Grad. Desc. 32 HU 88.57% 90.00% 89.56% 0.52% 20 min 25,450
Syn. RL 0 HU 87.65% 88.84% 88.28% 0.41% 1.5 h 7850
Grad. Desc. 0 HU 86.11% 86.73% 86.42% 0.22% 5 min 7850

To improve runtime for synaptic-level reinforcement learning experiments, minibatch-
ing is used wherein a random subset of the data was reselected to train on at regular
intervals. Batches composed of 5000 training data samples are reselected every 5000 itera-
tions for all synaptic-reinforcement-learning experiments. This approach is founded on
the premise that prediction error on a sufficiently large subset of the training dataset likely
reflects prediction error on the full set (as in stochastic gradient descent) [29]. Exploration
probability ε = 0.1 and synaptic learning rate αs = 0.0001. For the 32 hidden-unit experi-
ments, the learning rate αs is reduced to 0.00005 (i.e., reduced by half) at iteration 60,000
to promote network convergence. Meanwhile, 32 hidden-unit networks are trained for
500,000 iterations and 0 hidden-unit networks are trained for 200,000 iterations.

For the gradient-descent experiments, batch gradient descent is employed with learn-
ing rate α = 0.1. No regularization, momentum, or mini-batching is used. Duration of
training and learning rate is tuned such that the models train to completion (i.e., plateauing
validation loss and accuracy). A comparison of training and validation loss and accuracy
plots from 32 hidden unit experiments can be seen in Figure 3.

Figure 1. Adaptive policy applied to 2D decision-boundary-matching task. The ground-truth decision
boundary is shown in (A) while the learned decision boundary is in (B). Loss and accuracy scores per
training iteration are shown in (C,D), respectively. Exploration probability ε is set to 25%, Q-learning
rate αq = 0.01, synaptic learning rate αs = 0.001, and future reward discount γ = 0.9. tanh activation
functions were used in both the trained and target networks. Final accuracy is 95.9%, while final
mean Euclidean loss across the dataset is 0.004023.
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Figure 2. Static synaptic policy applied to 2D decision-boundary-matching task. The ground-truth
decision boundary is shown in (A) while the learned decision boundary is in (B). Loss and accuracy
scores per training iteration are shown in (C,D), respectively. Exploration probability ε is set to 25%,
synaptic learning rate αs = 0.001, and future reward discount γ = 0.9. tanh activation functions were
used in both the trained and target networks. Final accuracy is 97.7%, while final mean Euclidean
loss across the dataset is 0.003411.
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Figure 3. Training curves from single trials from the 32 hidden-unit synaptic RL and gradient descent
experiments.

Taking the difference between mean validation accuracy for each method indicates
that the 32 hidden -unit synaptic RL method has 1.11 ± 0.79% lower validation accuracy
than the 32 hidden-unit MLPs trained using gradient descent. The 0 hidden-unit synaptic
RL method has 1.86 ± 0.47% higher validation accuracy relative to the same size MLPs
trained using gradient descent.

4. Discussion

In this paper, we developed an algorithm to produce and apply a simple, effective
synaptic-level learning policy for MLP training. Reapplying the static policy generated
by training MLPs on a random decision-boundary-matching task resulted in networks
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reliably converging for previously unseen 2-dimensional decision boundaries and optical
character recognition tasks. Optical character recognition validation accuracy was also
comparable with, if not slightly higher than, neural networks trained using conventional
gradient -escent learning methods (Table 1). Overall, the static synaptic learning policy was
robust in the face of new activation functions, new tasks, and new network structures. The
simplicity, effectiveness, and robustness of this approach for training MLPs supports the
hypothesis that simple, universal synaptic-level algorithms can enable learning in large
connectionist models. The results from this investigation are particularly salient when
compared to previous computational work in this area as the learned, static RL policy was
more effective in general than the adaptive one.

Of note is the fact that the 0 hidden-unit experiments yielded superior validation
accuracy (1.86 ± 0.47% higher) for the synaptic RL method as compared to gradient
descent. We suspect that this may be due to the minibatching approach used for all synaptic
RL experiments. This may have helped the synaptic RL method escape local optima that the
batch gradient-descent method was susceptible to, as was the stochastic gradient descent
algorithm upon which the minibatching approach is based [29]. Further work is warranted
to understand this performance difference, including direct comparison of the synaptic RL
algorithm with stochastic gradient-descent methods.

A key limitation of the algorithm is that the synaptic RL models required many iter-
ations and relatively small synaptic learning rates to converge reliably. The overall time
complexity for training MLPs on optical character-recognition tasks was higher for the
proposed algorithm as compared to gradient descent methods. Since MLPs are easily
differentiable, it is logical to rely upon techniques that take advantage of this valuable
information to train parameters efficiently. Therefore, we do not propose this algorithm
as a replacement for conventional training algorithms, but rather as a demonstration
of the effectiveness of simple synaptic-level learning rules in connectionist models. As
well, while this study took significant inspiration from neuroscientific literature, MLPs
are incredibly simplistic models of the true behaviour of biological neurons [21], notably
lacking significant time-dependence. Further research is required to determine the ex-
tent to which the results obtained are applicable to the credit-assignment problem in
biological neurons.

Future directions may include investigations on the applicability of this method to
other connectionist models such as recurrent neural networks (RNNs) [29,34], convolutional
neural networks (CNNs) [35], and spiking neural networks (SNNs) [36]. It is conceivable
that the policy generated in this paper could apply directly to RNNs since they are feedfor-
ward neural networks (MLPs) with additional edges that forward-propagate to subsequent
time steps [37]. While this complicates back-propagation, the proposed method would
remain the same as the only nonlocal information required in each synapse is the binary
reward signal. It is of interest to determine the applicability of the static policy proposed in
this work to CNNs as there is substantially more structure imposed on the application of
kernels and these kernel “synapses” generally coexist with a set of fully connected terminal
layers (MLP) [38–40]. Since 2D convolutions can be expressed as matrix multiplications
with circulant matrices [41], it may be that the proposed algorithm would generalize to
the CNN architecture. Applying these findings to SNNs may require significant changes
as the large number of iterations required for MLP training would be difficult to achieve
for compute-intensive SNNs [36]. The neuroscience literature would suggest that time-
dependent local information features such as pre- and postsynaptic activation timing (as in
spike-timing-dependent synaptic plasticity) would be a valuable addition to the state space
of each synapse [22,42]. Applications in unsupervised learning (e.g., autoencoders) are also
of strong interest.

Incorporation of additional information for use in the synaptic-reinforcement learning
policy on MLPs may further enhance training speed and reliability. Additional testing
with different datasets and a more extensive hyperparameter search would also aid in
further understanding the broader applicability of the algorithm. Techniques such as
momentum [29] typically applied to gradient descent optimization methods may also be
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applicable in the design of even more effective synaptic-reinforcement learning algorithms.
In-depth comparison to works that attempt to create biologically-feasible approximation
methods for gradient optimization would also help to shed light on the nature of the
proposed algorithm and its similarities to existing methods [6,7].

The algorithm presented in this paper demonstrates the effectiveness of framing the
training of MLPs as a multiagent, single-policy reinforcement-learning problem. While
gradient-based methods are well established for MLPs, our approach removes the re-
quirement for easy differentiation of the network and the loss function. For the future
development of machine learning and machine intelligence systems, this is not an insignif-
icant constraint. After all, the primary example of “true intelligence” available to us is
the brain—a structure that does not appear to be driven directly by backpropagation-like
gradient optimization methods. It is therefore highly valuable to investigate alternative
optimization methods for connectionist models.

Furthermore, much of the prior computational work on framing neural network
training as a multiagent reinforcement-learning problem struggled with computational
efficiency [8–11]. Neuron connectivity and policy updates take a long time and are difficult
to run at large scale on modern hardware, especially in methods that train different policy
for each neuron. The proposed algorithm offers a low memory usage and low complex-
ity single-policy synaptic learning method that shows comparable end-performance to
gradient-based methods in training MLPs.

The synapse policy generated and implemented in this work bears resemblance to the
cellular automata studied extensively by Wolfram, Conway, Dennett, and others [43–45].
One of the major results in Wolfram’s A New Kind of Science is the fact that complex, ir-
reducible behaviour can result from the application of simple rules [43]. In addition to
being complex, the behavior exhibited by the static MLP synapse model in this study is
effective in actualizing a high-level goal (MLP training), agnostic of network topology,
activation function, and task. While the particular task of MLP training may be “reducible”
in the sense that gradient computations can enable estimation of near-optimal MLP param-
eters quickly, Wolfram’s work suggests that other potentially useful models for machine
intelligence may not have such a “short cut”.

Supplementary Materials: Julia implementations of this synaptic RL algorithm and the following
experiments can be found at https://gitlab.com/nsbspl/gradient-free-neural-network-training-via-
synaptic-level-reinforcement-learning (accessed on 26 December 2021).
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