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Abstract: The Kaczmarz method is an important tool for solving large sparse linear systems that
arise in computerized tomography. The Kaczmarz anomaly phenomenon has been observed recently
when solving certain types of random systems. This raises the question of whether a similar anomaly
occurs in tomography problems. The aim of the paper is to answer this question, to examine the
extent of the phenomenon and to explain its reasons. Another tested issue is the ability of random row
shuffles to sharpen the anomaly and to accelerate the rate of convergence. The results add important
insight into the nature of the Kaczmarz method.
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1. Introduction

The Kaczmarz algorithm is an iterative method for solving large sparse linear systems
of the form

Ax = b, (1)

where A ∈ Rm×n, b = (b1, . . . , bm)T ∈ Rm and x ∈ Rn denote the vectors of unknowns.
Let the rows of A be denoted by the row vectors aT

i , i = 1, . . . , m. Then, an equivalent way
to write (1) is

aT
i x = bi for i = 1, . . . , m. (2)

The idea of the Kaczmarz method is to handle one equation at a time. Let ‖ai‖2 = (aT
i ai)

1/2

denote the Euclidean vector norm and let w be a preassigned relaxation parameter that
satisfies 0 < w < 2. Then, the kth iteration of the Kaczmarz algorithm, k = 1, 2, . . . , is
composed of m steps. The ith step of the kth iteration, i = 1, . . . , m, starts with the vector
xk,i−1 and ends with the vector

xk,i = xk,i−1 + wai(bi − aT
i xk,i−1)/‖ai‖2

2. (3)

That is, the ith step uses only the ith equation. Observe that for w = 1, the point xk,i is
the projection of xk,i−1 on the hyperplane {x|aT

i x = bi}. Note also that the kth iteration,
k = 1, 2, . . . , starts with the vector

xk−1 = xk−1,m = xk,0, (4)

and ends with
xk = xk,m = xk+1,0. (5)

The starting point is denoted as x0 = x1,0.
The fact that the algorithm uses one row at a time makes it a popular tool for solving

large sparse linear systems that arise in important applications, such as computerized
tomography or digital signal processing. The literature on the Kaczmarz method is vast
and covers various issues. See [1–26] and the references therein. Results on the theory
behind the method and its rate of convergence can be found in [1,6,14,16,19,21,23,25],
while efficient implementations and applications are considered in [3,4,10,12–15,19]. In
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addition, there are several variants of the basic iteration, such as block versions and parallel
computing techniques [4,14,19]. In particular, recently, there has been growing interest in
Randomized Kaczmarz methods [5,20,22,24]. Some of the variants are easily described by
restating the algorithm with the restriction that each iteration regards only one equation,
which is chosen according to some rule. In the basic iteration (3), the rows are chosen in
a sequential “cyclic” manner. In “Greedy” Kaczmarz, we select an equation that has a
maximal residual, while in “Randomized” Kaczmarz, the equation’s index i is selected at
random, with probability proportional to ‖ai‖2

2, e.g., [5,20–22,24]. However, in the coming
discussions, the terms “Kaczmarz method” and “Kaczmarz iteration” refer to (3). The
original algorithm of Kaczmarz [16] is obtained from this framework when m = n and
w = 1.

The use of the relaxation parameter, w, is motivated by the close relation with the SOR
method for solving the linear system

AATy = b, (6)

where here, y ∈ Rm denotes the vector of unknowns. Let yk denote the current solution at
the end of the kth iteration of this method, k = 1, 2, . . . . Then, the following observation is
well known, e.g., [1,6]. If the starting points satisfy

x0 = ATy0, (7)

then the equality
xk = ATyk (8)

holds for all k. This relation implies that several convergence properties of Kaczmarz
method are inherited from those of the SOR method.

Let the linear system
âT

i x = b̂i, i = 1, . . . , m, (9)

be obtained from (2) by “normalizing” the rows of A to have unit length. That is,

âi = ai/‖ai‖2 and b̂i = bi/‖ai‖2. (10)

Then, it is easy to verify that applying the Kaczmarz method to solve (9) yields the same
sequence as (3). Hence, when studying the convergence properties of Kaczmarz method,
there is no loss of generality in assuming that the rows of A have unit length. (A similar
remark applies to the related SOR method).

In this paper, we consider an interesting feature of Kaczmarz method. To illustrate
this property, it is assumed that m is considerably larger than n. Let Ai and bi be composed
from the first i rows of A and b, respectively. That is

Ai = [a1, a2, . . . , ai]
T ∈ Ri×n (11)

and
bi = (b1, b2, . . . , bi)

T ∈ Ri. (12)

Then, the new feature is revealed when using Kaczmarz method for solving the linear
systems

Aix = bi, i = 1, 2, . . . , m, (13)

and watching how the number of rows, i, affects the rate of convergence. If A is an arbitrary
matrix, we are not expecting a certain behavior. However, as we shall see, in some cases,
the number of rows has a dramatic effect on the rate of convergence. Assume first that
i is considerably smaller than n. In this case, the Kaczmarz method has a fast rate of
convergence. Yet as i increases toward n, the rate of convergence slows down. That is, the
more equations we have, the more iterations are needed to solve the system. In particular,
as i approaches n, there is a dramatic increase in the number of iterations. The closer i and
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n are, the slower the convergence. However, as i passes n, the situation is reversed. From
now on, the more equations we have, the fewer iterations are needed. Finally, when i is
considerably larger than n, the method returns to enjoy rapid convergence.

We call this behavior the Kaczmarz anomaly. One aim of this paper is to examine the
presence of this phenomenon when solving tomography problems. The first report on the
Kaczmarz anomaly appeared in [7], but it remained almost unnoticed. Recently, we have
shown in [8] that it is likely to occur whenever the rows’ directions âi = ai/‖ai‖2 scatter
randomly over some portion of the unit sphere. This suggests that a random shuffle of the
rows may improve their randomality and strengthen the anomaly. A second aim of the
paper is to examine this idea.

The plan of the paper is as follows. The first two sections provide theoretical back-
ground that reveals the reasons behind the anomaly phenomenon. Section 2 overviews
the condition number anomaly phenomenon, while Section 3 explains how the condition
number of A affects the rate of convergence. Combining these features yields the Kaczmarz
anomaly. The background is based on recent results by this author; see [8,9]. The use of
random shuffles and related techniques is considered in Section 4. The paper ends with
numerical experiments that illustrate the anomaly phenomena.

2. The Smallest Singular Value Anomaly and the Condition Number Anomaly

Let αi denote the largest singular value of the matrix Ai, i = 1, . . . , m. Then, α2
i is the

largest eigenvalue of the cross-product matrix AT
i Ai, and there exists a unit eigenvector, ui,

that satisfies
AT

i Aiui = α2
i ui (14)

and
α2

i = uT
i AT

i Aiui = max {xT AT
i Aix | x ∈ Rn and ‖x‖2 = 1}. (15)

The first assertion characterizes the ascending behavior of the sequence
α1, . . . , αm. (For proofs of the coming theorems, see [8]).

Theorem 1. For i = 1, . . . , m− 1, we have the inequalities

α2
i ≤ α2

i + (uT
i ai+1)

2 ≤ α2
i+1 (16)

and
α2

i+1 ≤ α2
i + (uT

i+1ai+1)
2 ≤ α2

i + ‖ai+1‖2
2. (17)

Next, we explore the behavior of the smallest singular value, which is rather surprising.
Let βi denote the smallest singular value of the matrix Ai, i = 1, . . . , m. Then, as the coming
theorem shows, the first part of this sequence, β1, . . . , βn, is descending.

Theorem 2. Let âi+1 = ai+1/‖ai+1‖2 be a unit vector in the direction of ai+1, and let the unit
vector vi ∈ Rn be a right singular vector of Ai that corresponds to βi. Then, for i = 1, 2, . . . , n− 1,
we have the inequalities

β2
i+1 ≤ β2

i [1− (vT
i âi+1)

2]/[1 + β2
i (v

T
i âi+1)

2/‖ai+1‖2
2 ]

≤ β2
i [1− (vT

i âi+1)
2] ≤ β2

i . (18)

The assumption βi > 0 is not essential for the proof of Theorem 2, but it enables us to
replace (18) with the inequality

β2
i+1/β2

i ≤ [1− (vT
i âi+1)

2]/[1 + β2
i (v

T
i âi+1)

2/‖ai+1‖2
2 ]. (19)

This exposes the actual reasons that force β2
i+1 to be smaller than β2

i . One reason is the
size of ai+1. We see that the smaller ‖ai+1‖2

2 is, the smaller is β2
i+1. Another important

factor is the size of the scalar product vT
i âi+1. Since both vi and âi+1 are unit vectors, the
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Cauchy–Schwartz inequality implies (vT
i âi+1)

2 ≤ 1, and equality occurs if and only if
âi+1 = ±vi. Now, from (19), we see that the larger (vT

i âi+1)
2 is, the smaller is β2

i+1.
In this paper, we concentrate on the behavior of Kaczmarz method, and for this

purpose, it is possible to assume that all the rows of A have unit length. This assumption
implies that β1 = 1 and turns (19) into the form

β2
i+1/β2

i ≤ [1− (vT
i âi+1)

2]/[1 + β2
i (v

T
i âi+1)

2]. (20)

A further simplification is allowed when β2
i becomes considerably smaller than one. In this

case, the factor 1/[1 + β2
i (v

T
i âi+1)

2] approaches one, and the bound

β2
i+1/β2

i ≤ 1− (vT
i âi+1)

2 (21)

is nearly as good as (20).
It is left to see how the second part of the sequence, βn, βn+1, . . . , βm, behaves. Below,

we will show that this part is ascending. The proof is based on the observation that now, β2
i

is the smallest eigenvalue of the cross-product matrix AT
i Ai. Hence, for i = n, n + 1, . . . , m,

there exists a unit eigenvector vi such that

AT
i Aivi = β2

i vi (22)

and
vT

i AT
i Aivi = β2

i = min{xT AT
i Aix | x ∈ Rn and ‖x‖2 = 1}. (23)

Theorem 3. For i = n, n + 1, . . . , m− 1, we have the inequalities

β2
i ≤ β2

i + (vT
i+1ai+1)

2 ≤ β2
i+1. (24)

Assume for a moment that βi > 0, which enables us to rewrite (24) in the form

β2
i+1/β2

i ≥ 1 + (vT
i+1ai+1)

2/β2
i . (25)

Assume further that the rows of the matrix have unit length and random directions. Then, a
small β2

i implies a large increase ratio, while a large β2
i means a slow increase. Consequently,

when i is close to n, we expect a fast increase, but as i moves away from n, the rate of
increase is likely to slow down.

Combining the results of Theorems 2 and 3 shows that the sequence β1, . . . , βn is
decreasing, the sequence βn, . . . , βm is increasing, and βn is the smallest number in the
whole sequence. Moreover, in some cases, βn can be considerably smaller than its neighbors.
This behavior is called the smallest singular value anomaly.

Let ki denote the condition number of Ai, i = 1, . . . , m. In the rest of this section, we
assume for simplicity that βi > 0 for i = 1, . . . , m, and that

ki = αi/βi. (26)

(The discussion of the case when βi = 0 is deferred to the next section. In this case, βi is
redefined as the smallest nonzero singular value of Ai). We have seen that the sequence
α1, . . . , αn is ascending, while the sequence β1, . . . , βn is descending. This proves the
following conclusion.

Theorem 4. The sequence k1, . . . , kn is ascending. That is,

ki ≤ ki+1 for i = 1, . . . , n− 1. (27)
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The behavior of the sequence kn, kn+1, . . . , km is not that straightforward. We know
that the sequences αn, αn+1, . . . , αm and βn, βn+1, . . . , βm are ascending, but this does not
provide decisive information. Indeed, for i ≥ n, one can find examples in which ki+1 < ki
as well as examples with ki+1 > ki, e.g., [8]. The condition number anomaly occurs when
the sequence kn, . . . , km is descending. That is, when

ki ≥ ki+1 for i = n, . . . , m− 1. (28)

The reasons behind this behavior lie in the following observations.

Theorem 5. Let ui+1 be as in Theorem 1, let vi+1 be as in Theorem 3, and consider the terms

η2
i = (uT

i+1ai+1)
2/α2

i (29)

and
ν2

i = (vT
i+1ai+1)

2/β2
i . (30)

Then, for i = n, . . . , m− 1,
k2

i+1 ≤ k2
i (1 + η2

i )/(1 + ν2
i ). (31)

Proof. From (17), we see that

α2
i+1 ≤ α2

i + (uT
i+1ai+1)

2 = α2
i (1 + η2

i ) (32)

while Theorem 3 gives

β2
i+1 ≥ β2

i + (vT
i+1ai+1)

2 = β2
i (1 + ν2

i ). (33)

Hence, combining these inequalities yields (31).

Corollary 1. The inequality
ν2

i ≥ η2
i (34)

implies
ki ≥ ki+1. (35)

The last corollary is a key observation that indicates at which situations the condition
number anomaly is likely to occur. Assume for example that the direction of ai+1 is chosen
in some random way. Then, the scalar product terms (uT

i+1ai+1)
2 and (vT

i+1ai+1)
2 are likely

to be about the same size. However, since β2
i is (considerably) smaller than α2

i , the term
(vT

i+1βi+1)
2/β2

i is expected to be larger than (uT
i+1ai+1)

2/α2
i , which implies ki ≥ ki+1. In

other words, the condition number anomaly is likely to occur whenever the rows’ directions
scatter in some random way. This conclusion means that the phenomenon is shared by a
wide range of matrices. See Tables 1–6 and the examples in [8].

3. The Rate of Convergence of the Kaczmarz Method

We have seen that the Kaczmarz method for solving (1) is closely related to the SOR
method for solving the linear system

Gy = b, (36)

where
G = AAT ∈ Rm×m. (37)

Below, we will use this relation to obtain the iteration matrix of Kaczmarz method (3). As
before, it is allowed to assume that the rows of A have unit length. That is

‖ai‖2 = 1 for i = 1, . . . , m. (38)
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This assumption implies that G has the form

G = I − L− LT , (39)

where I denotes the identity matrix, and L is a strictly lower triangular matrix. The SOR
iteration splits G in the form

G = Bw − Cw, (40)

where
Bw = (I − wL)/w (41)

and
Cw = [(1− w)I + wLT ]/w. (42)

As before, w is a preassigned relaxation parameter that satisfies 0 < w < 2. The kth SOR
iteration, k = 1, 2, . . . , starts with yk−1 and ends with yk, which is computed by solving the
linear system

Bwy = Cwyk−1 + b. (43)

In other words, yk is obtained from yk−1 by the rule

yk = Hwyk−1 + dw, (44)

where
Hw = B−1

w Cw (45)

is the related iteration matrix, and

dw = B−1
w b. (46)

Observe that (40) enables us to express Hw in the form

Hw = I − B−1
w G = I − B−1

w AAT . (47)

Multiplying (44) by AT gives

xk = AT Hwyk−1 + ATdw, (48)

while substituting I − B−1
w AAT instead of Hw shows that

xk = (I − AT B−1
w A)xk−1 + ATdw. (49)

This means that the iteration matrix of the Kaczmarz method has the form

Fw = I − AT B−1
w A. (50)

Note that Hw is an m×m matrix, while Fw is an n× n matrix. However, as shown in [9],
these matrices share the nonzero eigenvalues.

The theory of the Kaczmarz method tells us that the sequence xk, k = 1, 2, . . . , con-
verges for any choice of b and x0, e.g., [3,6,9,10,14,19,22,25]. Moreover, let x̂ denote the limit
point of this sequence; then, the error vectors xk − x̂ satisfy

xk − x̂ = (Fw)
k(x0 − x̂). (51)

This shows that the rate of convergence depends on ρ(Fw), the spectral radius of Fw.
The smaller ρ(Fw) is, the faster the convergence. It is interesting, therefore, to see which
properties of A make ρ(Fw) small. One answer is given by the following bound, which has
recently been derived in [9]. (A second answer is given in the next section, in which we
consider the effect of rows shuffling).



AppliedMath 2022, 2 202

Let α denote the largest singular value of A, let β > 0 denote the smallest nonzero
singular value of A, and let k = α/β denote the related condition number of A. Let ωopt
denote the optimal relaxation parameter of the Kaczmarz method. That is,

ρ(Fwopt) = min
{

ρ(Fw)
∣∣∣ 0 < w < 2

}
. (52)

Then, it is proved in [9] that
ρ(Fwopt)

2 ≤ 1− 1/(k2c), (53)

where c is a constant,
c = 1 + log2(2m). (54)

The bound is not tight, and the actual rate of convergence (even for w = 1) is often faster
than the implied rate. Recall that in many practical problems, wopt is not known in advance,
and its value is computed by repeated experiments; see Section 5. Yet the main consequence
from this bound is that a small condition number forces fast convergence. Conversely, for
large k, the bound tends to 1, which allows slow convergence. Indeed, as explained in [9],
the existence of small nonzero singular values invites a slow rate of convergence.

The relation between the condition number and the rate of convergence suggests that
the Kaczmarz anomaly phenomenon is caused by the condition number anomaly. We
have seen that the last phenomenon is expected to occur whenever the rows’ directions
scatter randomly. This raises the question of whether tomography problems possess these
properties. The next sections attempt to answer this question.

4. From Random Shuffles to Optimal Ordering

The Kaczmarz anomaly phenomenon is observed by watching how the number of
rows affects the rate of convergence. Another property that affects the rate of convergence is
row ordering. The initial ordering in tomography problems is often rather poor, in the sense
that it yields a slow rate of convergence. A typical tomography matrix is composed from
several blocks of rows, where each block is generated by one “view”. The views (and the
blocks) are ordered according to the size of the view angle, which is the natural geometric
order, e.g., [15], p. 602. Yet this natural order minimizes the angle between adjacent views,
which is a property that retards convergence. A possible remedy for this difficulty is to
apply a random shuffle of rows before starting the Kaczmarz process. The shuffle is aimed
at achieving a faster rate of convergence (see below). Yet, at the same time, it improves the
randomality of the rows’ directions, which sharpens the anomaly phenomena.

The term “random shuffle” means that the rows of the linear system (1) are reordered
by applying a random permutation. This converts (1) into the form

PAx = Pb, (55)

where P is a random permutation matrix. To simplify the coming discussions and ex-
periments, we assume that the random permutation is chosen by MATLAB’s command
“randperm (m)”, and the matrix PA is generated by the command “shuffle (A)”, which uses
the “randperm (m)” command.

The reordering of the rows is expected to change the iteration matrix of the Kaczmarz
method as well as its rate of convergence. It is easy to verify this assertion by using the
relation with the SOR method for solving the system

PAATPTy = Pb. (56)

Now, it is easy to see that the SOR iteration for solving (56) differs from that of (6). Indeed,
the observation that the reordering of rows changes the rate of convergence of the SOR
method is not new. See, for example, [27] and the references therein.

As mentioned above, it has been observed by several authors that when solving
tomography problems, a random row shuffle may improve the rate of convergence of
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the Kaczmarz method. See, for example, [14,15,19,21,22,24] and the references therein. A
possible explanation of this phenomenon comes from geometric interpretation of the basic
step (3) when i > 1 and w = 1. Let 0 ≤ θi ≤ π/2 denote the angle between ai−1 and
ai. Then, in two-dimensional space, the distance to the solution point is reduced by the
factor cos θi. That is, a small angle yields a small reduction while a large angle implies a
large reduction. When moving to larger dimensions, the situation is not that simple, but it
is still true that a small θi forces a small step toward the solution, while a large θi allows
larger steps. (Recall that a large θi means that ai−1 and ai are nearly orthogonal). These
considerations suggest that a random shuffle may improve the rate of convergence if it
improves orthogonality between adjacent rows.

Similar arguments have motivated Herman and Meyer [15] to propose an optimal
ordering of rows that takes advantage of the special structure of tomography problems to
maximize orthogonality between adjacent rows. Further optimal ordering schemes that
follow this approach are described in [11,17,18].

The observation that a random ordering of rows may improve the rate of convergence
has motivated the Randomized Kaczmarz algorithm of Strohmer and Vershynin [24].
In this algorithm, the basic step treats one equation whose index is selected at random
with probability proportional to ‖ai‖2

2. Thus, when all the rows have unit length, all the
indices have equal probability. (In our experiments, the row index is obtained by the
“randi(m)” command.)

The use of a random shuffle has recently been considered by Oswald and Zhou [21,22],
who proposed an improved randomized method, the Shuffled Kaczmarz algorithm. In
this method, each iteration is preceded by a random shuffle of the rows. This formulation
has two advantages. First, as in the Kaczmarz method, each iteration treats all the equations.
Second, since all the shuffled matrices have the same singular values as A, the bound on
the rate of convergence is the same as in the Kaczmarz method.

It is interesting to compare the above randomized methods with the Initial Shuffle
method, which uses one random shuffle before starting the Kaczmarz algorithm. Both
approaches share the same motivation. If the given system has bad ordering, then a
random shuffle is likely to provide a better ordering. Furthermore, basically, we are not
expecting large differences in the quality of the generated random shuffles. Hence, in
practice, the initial shuffle method is likely to run at the same speed as the randomized
Kaczmarz methods. Yet, since it uses only one shuffle, there is a tiny probability to obtain
bad ordering, while randomized algorithms avoid this possibility.

5. Numerical Experiments

The experiments examine the behavior of the Kaczmarz method (3) when solving
tomography test problems. The test problems are generated by using MATLAB’s functions
from “AIR tools”, which is a MATLAB package of algebraic reconstruction iterative meth-
ods prepared by P.C. Hansen and others [12,13]. The test problems imitate the scanning of
an N×N array of square cells. This generates a linear system with n = N2 unknowns. (The
unknowns present the densities of the cells while equations describe rays.) In our experi-
ments, N = 20, and all the test matrices have n = N2 = 400 columns. The number of rows
depends on the nature of the scanning device and the specific details of the experiment.

The Parallel beam tomography problems are generated by using MATLAB’s function

paralleltomo (N, θ, p) (57)

with N = 20, theta = 1:1:180, and p = round (
√

2N) = 28. (The vector theta contains the an-
gles of the views, while p denotes the number of parallel rays for each view.) This results in a
linear system with n = N2 = 400 unknowns and m = 180× 28 = 5040 equations. However,
if a ray passes outside the array, it generates a null row. So, we use MATLAB’s function

rzr(A, b) (58)
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to remove zero rows, which yields a linear system with n = 400 unknowns and
m = 4340 rows.

In Fan beam tomography, each angle (each view) is related to a “fan” of p rays, and
the problem is generated by using the function

fanbeamtomo (N) (59)

with N = 20 and the default values theta = 0:1:359 and p = round (
√

2N) = 28. This
builds a linear system with n = N2 = 400 unknowns and m = 28× 360 = 10,080 equations.
Then, after removing zero rows, we remain with m = 9520 equations.

In Seismic tomography problems, the linear system is generated by applying the
function

seismictomo (N, s, p) (60)

with N = 20, s = 2N sources, and p = 4N receivers. This setting builds a linear system
with n = N2 = 400 unknowns and m = s× p = 3200 equations. (In this case, there are no
zero rows.)

The experiments were carried out as follows. At first, we have generated an m× n
linear system, Ax = b, as described above. Together with A and b, we are given a
prescribed solution x∗ ∈ Rn, which is the one that has been used to build A and b. Then, in
the second stage, the rows of A are normalized to have a unit norm. Thus, for i = 1, . . . , m,
the ith row of A is redefined as ai = ai/‖ai‖2, while b is updated as b = Ax∗. Finally,
after the normalization, the Kaczmarz method was applied to solve partial systems of the
form (13). The starting point in our runs is always x0 = 0, and the iterative process was
terminated after 666 iterations.

The shuffled test problems are obtained by reordering the rows of A, using a random
permutation. The actual reordering is carried out by applying MATLAB’s function

shuffle (A). (61)

After the shuffling, the vector b is redefined as b = Ax∗ where x∗ denotes the known
solution. (The shuffling takes place after the normalization but before starting the solution
of the partial linear systems.)

The rows in Tables 1–6 describe the use of the Kaczmarz method to solve partial linear
systems of the form

Aix = bi. (62)

Recall that Ai is a i× n submatrix of A which is composed from the first i rows of A, and
bi = (b1, . . . , bi)

T ∈ Ri is composed from the first i entries of b. The results for the linear
system (62) start with the number of rows, i, and the number of zero singular values of Ai.
Then, we provide the values of αi, βi, and ki, as well as the related residual values. As noted
in the tables’ headlines, αi is the largest singular value of Ai, βi is the smallest nonzero
singular value of Ai, and ki = αi/bi is the condition number of Ai. The residual values are
defined as

‖Aix666 − bi‖2/‖Aix0 − bi‖2 = ‖Aix666 − bi‖2/‖bi‖2 (63)

where ‖ · ‖2 denotes the Euclidean vector norm and x666 denotes the computed solution
after 666 iterations. The Kaczmarz method uses a relaxation parameter, w, and the residual
values are given for w = 1 and w = wopt. The value of wopt was obtained by running the
Kaczmarz method with values of w from the set

{0.1, 0.2, . . . , 1.8, 1.9}
⋃
{1.95} (64)

and taking a value of w that yields the smallest residual.
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Table 1. Parallel beam tomography.

Number Number of Zero Largest Smallest Nonzero Condition Residual after
of Rows Singular Values Singular Value Singular Value Number 666 Iterations

i αi βi ki w = 1 w = wopt wopt

50 6 1.723 6.46 × 10−2 2.67× 10 1.91 × 10−8 7.95 × 10−13 1.4

100 8 2.213 9.77 × 10−3 2.26 × 102 1.49 × 10−4 1.12 × 10−4 1.5

200 8 3.133 7.50 × 10−4 4.17× 10³ 3.83 × 10−4 2.77 × 10−4 1.2

300 20 3.740 5.18 × 10−4 7.22× 10³ 1.38 × 10−3 1.27 × 10−3 1.1

360 27 4.105 2.91 × 10−5 1.41 × 105 2.04 × 10−3 2.02 × 10−3 1.1

380 31 4.218 2.67 × 10−5 1.58 × 105 2.37 × 10−3 2.37 × 10−3 1.0

400 37 4.307 2.12 × 10−5 2.03 × 105 2.84 × 10−3 2.84 × 10−3 1.0

420 22 4.363 5.09 × 10−6 8.58 × 105 3.10 × 10−3 3.09 × 10−3 0.9

440 16 4.468 7.07 × 10−5 6.32 × 104 3.13 × 10−3 3.13 × 10−3 1.0

500 11 4.774 2.15 × 10−4 2.22 × 104 2.82 × 10−3 2.82 × 10−3 1.0

1000 0 6.504 2.47 × 10−3 2.64× 10³ 3.11 × 10−3 2.83 × 10−3 0.6

2000 0 9.111 2.29 × 10−2 3.97 × 102 1.48 × 10−3 1.24 × 10−3 0.6

3000 0 11.246 6.87 × 10−2 1.64 × 102 6.82 × 10−4 3.64 × 10−4 0.2

4000 0 12.898 1.01 × 10−1 1.28 × 102 4.66 × 10−4 2.14 × 10−4 0.2

4340 0 13.498 1.15 × 10−1 1.18 × 102 3.76 × 10−4 1.76 × 10−4 0.2

Table 2. Parallel beam with initial shuffle.

Number Number of Zero Largest Smallest Nonzero Condition Residual after
of Rows Singular Values Singular Value Singular Value Number 666 Iterations

i αi βi ki w = 1 w = wopt wopt

40 1 1.786 8.94 × 10−2 2.00× 10 5.79 × 10−9 2.08 × 10−16 1.5

50 1 1.966 6.61 × 10−2 2.97× 10 4.15 × 10−6 5.31 × 10−15 1.6

60 1 1.999 6.57 × 10−2 3.04× 10 6.41 × 10−6 9.79 × 10−15 1.6

100 1 2.600 6.41 × 10−2 3.52× 10 1.43 × 10−5 1.48 × 10−13 1.6

200 5 3.064 1.31 × 10−2 2.34 × 102 3.14 × 10−4 8.42 × 10−6 1.6

300 9 3.694 7.37 × 10−5 5.01 × 104 8.55 × 10−4 7.55 × 10−4 1.4

360 15 4.026 1.41 × 10−3 2.85× 10³ 1.64 × 10−3 1.60 × 10−3 0.9

380 18 4.119 3.94 × 10−4 1.05 × 104 1.95 × 10−3 1.81 × 10−3 0.8

400 22 4.200 4.41 × 10−4 9.53× 10³ 1.72 × 10−3 1.59 × 10−3 0.8

420 5 4.304 1.09 × 10−4 3.96 × 104 1.86 × 10−3 1.80 × 10−3 0.9

440 0 4.407 6.25 × 10−4 7.05× 10³ 1.73 × 10−3 1.71 × 10−3 0.9

500 0 4.678 4.77 × 10−3 9.80 × 102 1.59 × 10−3 1.58 × 10−3 1.1

1000 0 6.534 3.86 × 10−2 1.69 × 102 1.18 × 10−4 1.40 × 10−5 1.95

2000 0 9.216 7.22 × 10−2 1.28 × 102 7.45 × 10−6 4.89 × 10−7 1.8

3000 0 11.243 9.15 × 10−2 1.23 × 102 1.03 × 10−6 2.00 × 10−8 1.8

4000 0 12.965 1.10 × 10−1 1.18 × 102 9.63 × 10−8 1.07 × 10−10 1.95

4340 0 13.498 1.15 × 10−1 1.18 × 102 4.36 × 10−8 9.80 × 10−11 1.8
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Table 3. Fan beam tomography.

Number Number of Zero Largest Smallest Nonzero Condition Residual after
of Rows Singular Values Singular Value Singular Value Number 666 Iterations

i αi βi ki w = 1 w = wopt wopt

40 3 1.601 8.98 × 10−2 1.784× 10 2.29 × 10−10 6.29 × 10−16 1.4

50 3 1.601 8.98 × 10−2 1.784× 10 2.07 × 10−10 5.64 × 10−16 1.5

100 11 2.275 1.37 × 10−3 1.658× 10³ 1.51 × 10−5 6.36 × 10−6 1.2

200 31 3.165 2.59 × 10−4 1.220 × 104 3.37 × 10−4 2.94 × 10−4 1.2

300 55 3.812 7.03 × 10−4 5.418× 10³ 1.40 × 10−3 1.37 × 10−3 1.1

360 64 4.068 5.17 × 10−4 7.875× 10³ 1.93 × 10−3 1.89 × 10−3 0.9

380 68 4.213 4.70 × 10−4 8.969× 10³ 2.11 × 10−3 2.09 × 10−3 0.9

400 74 4.346 9.89 × 10−5 4.393 × 104 2.25 × 10−3 2.24 × 10−3 0.9

420 61 4.452 8.22 × 10−5 5.416 × 104 2.77 × 10−3 2.72 × 10−3 0.9

440 44 4.531 3.81 × 10−5 1.190 × 105 2.95 × 10−3 2.93 × 10−3 0.9

500 12 4.810 3.13 × 10−5 1.537 × 105 3.05 × 10−3 2.85 × 10−3 0.7

1000 0 6.640 3.60 × 10−3 1.845× 10³ 3.12 × 10−3 2.84 × 10−3 0.5

2000 0 9.317 1.37 × 10−2 6.792 × 102 1.79 × 10−3 1.68 × 10−3 0.6

3000 0 11.435 4.13 × 10−2 2.767 × 102 3.10 × 10−4 2.16 × 10−4 0.4

4000 0 13.141 5.93 × 10−2 2.217 × 102 3.13 × 10−4 2.28 × 10−4 0.4

8000 0 18.460 8.99 × 10−2 2.053 × 102 1.90 × 10−4 1.32 × 10−4 0.2

9520 0 20.106 9.76 × 10−2 2.06 × 102 1.05 × 10−4 7.77 × 10−5 0.4

Table 4. Fan beam with initial shuffle.

Number Number of Zero Largest Smallest Nonzero Condition Residual after
of Rows Singular Values Singular Value Singular Value Number 666 Iterations

i αi βi ki w = 1 w = wopt wopt

40 0 1.589 2.63 × 10−1 6.04 1.08 × 10−16 4.90 × 10−17 0.7

50 0 1.764 2.53 × 10−1 6.96 1.35 × 10−16 5.91 × 10−17 0.9

100 2 2.254 4.08 × 10−3 5.52 × 102 1.37 × 10−4 1.23 × 10−4 0.9

200 5 3.056 2.75 × 10−3 1.11× 10³ 3.89 × 10−4 3.88 × 10−4 1.1

300 8 3.700 1.50 × 10−3 2.47× 10³ 1.23 × 10−3 1.22 × 10−3 0.9

360 10 4.041 4.04 × 10−4 1.00 × 104 1.25 × 10−3 1.25 × 10−3 1.0

380 13 4.139 2.32 × 10−4 1.78 × 104 1.28 × 10−3 1.26 × 10−3 1.2

400 17 4.240 3.17 × 10−4 1.34 × 104 1.28 × 10−3 1.26 × 10−3 0.9

420 1 4.332 1.13 × 10−6 3.83 × 106 1.71 × 10−3 1.52 × 10−3 0.7

440 0 4.430 7.70 × 10−4 5.75× 10³ 1.49 × 10−3 1.47 × 10−3 0.9

500 0 4.699 4.19 × 10−3 1.12× 10³ 7.96 × 10−4 7.92 × 10−4 1.1

1000 0 6.620 2.60 × 10−2 2.54 × 102 9.46 × 10−5 9.46 × 10−5 1.0

2000 0 9.288 4.15 × 10−2 2.24 × 102 5.13 × 10−5 2.98 × 10−5 1.7

3000 0 11.291 5.08 × 10−2 2.22 × 102 2.65 × 10−5 4.51 × 10−6 1.95

4000 0 13.005 5.96 × 10−2 2.18 × 102 1.45 × 10−5 4.27 × 10−6 1.8

8000 0 18.420 9.01 × 10−2 2.04 × 102 8.79 × 10−7 1.13 × 10−8 1.9

9520 0 20.106 9.76 × 10−2 2.06 × 102 3.23 × 10−7 9.81 × 10−10 1.95
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Table 5. Seismic tomography problems.

Number Number of Zero Largest Smallest Nonzero Condition Residual after
of Rows Singular Values Singular Value Singular Value Number 666 Iterations

i αi βi ki w = 1 w = wopt wopt

40 1 2.929 4.73 × 10−2 6.19× 10 9.55 × 10−5 4.61 × 10−7 1.6

50 1 3.103 2.93 × 10−2 1.06 × 102 7.95 × 10−5 2.75 × 10−5 1.6

60 1 3.199 2.92 × 10−2 1.09 × 102 9.29 × 10−5 1.95 × 10−5 1.6

100 5 3.803 2.92 × 10−2 1.30 × 102 6.44 × 10−5 1.30 × 10−5 1.6

200 11 5.159 1.06 × 10−3 4.89× 10³ 4.40 × 10−3 3.81 × 10−3 0.5

300 24 6.154 4.33 × 10−4 1.42 × 104 3.92 × 10−3 3.88 × 10−3 0.6

360 33 6.600 1.22 × 10−4 5.42 × 104 5.06 × 10−3 4.25 × 10−3 0.4

380 34 6.773 1.06 × 10−5 6.41 × 105 4.47 × 10−3 4.19 × 10−3 0.5

400 45 6.859 2.40 × 10−6 2.86 × 106 4.82 × 10−3 4.40 × 10−3 0.5

420 34 6.985 2.41 × 10−6 2.90 × 106 4.88 × 10−3 4.44 × 10−3 0.5

440 32 7.173 2.43 × 10−6 2.95 × 106 4.27 × 10−3 3.79 × 10−3 0.6

500 26 7.488 1.06 × 10−5 7.03 × 105 4.72 × 10−3 4.27 × 10−3 0.5

1000 6 9.807 1.89 × 10−3 5.18× 10³ 2.61 × 10−3 2.43 × 10−3 0.5

2000 4 12.513 9.91 × 10−3 1.26× 10³ 6.54 × 10−4 6.45 × 10−4 1.2

3000 4 14.474 2.79 × 10−2 5.18 × 102 4.56 × 10−5 4.56 × 10−5 1.0

3200 4 14.902 2.87 × 10−2 5.19 × 102 4.51 × 10−5 4.51 × 10−5 1.0

Table 6. Seismic tomography problems with initial shuffle.

Number Number of Zero Largest Smallest Nonzero Condition Residual after
of Rows Singular Values Singular Value Singular Value Number 666 Iterations

i αi βi ki w = 1 w = wopt wopt

40 0 1.940 3.46 × 10−1 5.61 1.04 × 10−16 1.91 × 10−17 0.4

50 0 2.099 1.70 × 10−1 1.23× 10 1.75 × 10−16 1.12 × 10−16 1.2

60 0 2.341 1.17 × 10−1 2.01× 10 6.16 × 10−11 1.30 × 10−16 1.3

100 1 2.876 8.21 × 10−2 3.50× 10 1.69 × 10−7 1.38 × 10−8 1.1

200 2 3.818 4.19 × 10−3 9.11 × 102 4.00 × 10−4 3.94 × 10−4 0.9

300 8 4.719 2.22 × 10−7 2.12 × 107 4.24 × 10−4 3.67 × 10−4 0.7

360 21 5.075 5.56 × 10−7 9.13 × 106 3.37 × 10−4 3.28 × 10−4 1.2

380 32 5.225 6.33 × 10−7 8.25 × 106 2.87 × 10−4 2.87 × 10−4 1.0

400 40 5.365 3.28 × 10−8 1.64 × 108 2.09 × 10−4 2.09 × 10−4 1.1

420 32 5.514 5.29 × 10−8 1.04 × 108 2.21 × 10−4 2.20 × 10−4 1.1

440 24 5.656 1.15 × 10−7 4.93 × 107 2.05 × 10−4 2.05 × 10−4 0.9

500 21 6.034 6.29 × 10−5 9.59 × 104 1.95 × 10−4 1.94 × 10−4 0.9

1000 10 8.370 4.37 × 10−3 1.92× 10³ 6.94 × 10−5 6.94 × 10−5 1.0

2000 6 11.857 2.09 × 10−2 5.67 × 102 3.16 × 10−5 2.52 × 10−5 1.5

3000 4 14.462 1.96 × 10−2 7.37 × 102 1.90 × 10−5 1.36 × 10−5 1.6

3200 4 14.902 2.87 × 10−2 5.19 × 102 1.56 × 10−5 1.08 × 10−5 1.6
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The reading of the tables is simple. Consider for example Table 2 when the number
of rows equals 400. In this case, the related 400× 400 matrix has 22 zero singular values,
αi = 4.200, βi = 4.41 × 10−4, ki = 9.53× 10³, and the residual values are 1.72 × 10−3 for
w = 1, and 1.59 × 10−3 for wopt = 0.8.

The experiments reveal interesting features of the anomaly phenomena. First, note
the slow increase of the sequence α1, . . . , αm. We see that αi is considerably smaller than i.
Moreover, the larger i is, the smaller the ratio αi/i. This behavior is due to the fact that the
rows have unit length and random directions; see (17).

The second remark is about the smallest singular value anomaly and the related
condition number anomaly. The derivation of these properties relies on the assumption
that the submatrices Ai, i = 1, . . . , m, do not have zero singular values. Yet, as our tables
show, several submatrices have zero singular values. Consequently, in some cases, we can
see a slight violation of the anomaly behavior.

The third point is about the use of an initial random shuffle. Note that the shuffle
reduces the number of zero singular values in the submatrices. In addition, as expected,
the shuffled systems enjoy sharper anomaly. In particular, we see that for highly overde-
termined (underdetermined) linear systems, the use of a shuffle improves the rate of
convergence!

Tables 7 and 8 display experiments with randomized Kaczmarz methods. In Shuffled
Kaczmarz, each iteration starts with a random shuffle of the linear system that is solved.
In Randomized Kaczmarz, each iteration is composed from m steps, where each step
treats one randomly chosen equation. Thus, in both methods, the computational effort per
iteration is slightly larger than that of Kaczmarz iteration. Consider for example Table 7,
which describes experiments with the Shuffled Kaczmarz method. Now, let us inspect the
solution of the Fan beam tomography problem of the form (62) with i = 1000 rows. In this
case, the related residual values are 1.64 × 10−3 and 8.54 × 10−5, where the smaller value
is due to initial shuffle.

The results of Tables 7 and 8 are quite interesting. First, note that the two random-
ized methods behave in a similar way. In particular, both methods possess the anomaly
phenomenon, and the use of an initial shuffle sharpens the anomaly. However, when
solving highly overdetermined systems, the use of initial shuffle has a smaller effect, since
now, each iteration includes an internal shuffle. Moreover, comparing Tables 7 and 8 with
Tables 1–6 indicates that the randomized methods are not faster than the Kaczmarz method
with initial shuffle. That is, one shuffle is enough!

Summarizing our experiments, we see that the asymptotic rate of convergence of the
Kaczmarz method can be rather slow. Yet, the rate of convergence is considerably affected
by a number of factors, such as the number of rows (the Kaczmarz anomaly phenomenon),
the value of w, and rows ordering.
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Table 7. Solving tomography problems with the shuffled Kaczmarz method.

Number of Rows Residuals after 666 Iterations
No Initial Shuffle With Initial Shuffle

i Parallel Beam Fan Beam Seismic Parallel Beam Fan Beam Seismic

40 7.90 × 10−8 5.03 × 10−9 2.21 × 10−4 6.65 × 10−7 8.22 × 10−17 1.31 × 10−16

50 3.27 × 10−6 4.85 × 10−9 3.40 × 10−4 3.47 × 10−5 5.32 × 10−17 7.12 × 10−15

100 3.01 × 10−4 4.53 × 10−5 2.91 × 10−4 9.92 × 10−5 9.18 × 10−5 1.24 × 10−5

200 1.01 × 10−3 6.90 × 10−4 2.30 × 10−3 5.28 × 10−4 4.86 × 10−4 2.89 × 10−4

300 2.21 × 10−3 1.95 × 10−3 2.72 × 10−3 9.34 × 10−4 1.46 × 10−3 3.73 × 10−4

360 2.65 × 10−3 1.80 × 10−3 3.26 × 10−3 1.74 × 10−3 1.26 × 10−3 3.29 × 10−4

380 3.07 × 10−3 2.43 × 10−3 3.14 × 10−3 1.80 × 10−3 1.36 × 10−3 2.79 × 10−4

400 2.92 × 10−3 2.67 × 10−3 3.11 × 10−3 1.52 × 10−3 1.14 × 10−3 2.31 × 10−4

420 2.66 × 10−3 2.85 × 10−3 3.18 × 10−3 2.03 × 10−3 1.25 × 10−3 1.93 × 10−4

440 3.11 × 10−3 2.42 × 10−3 3.46 × 10−3 1.80 × 10−3 1.51 × 10−3 1.75 × 10−4

500 2.99 × 10−3 2.44 × 10−3 3.01 × 10−3 1.58 × 10−3 8.18 × 10−4 1.81 × 10−4

1000 1.87 × 10−3 1.64 × 10−3 1.17 × 10−3 1.17 × 10−4 8.54 × 10−5 7.62 × 10−5

2000 3.85 × 10−4 6.66 × 10−4 4.06 × 10−4 7.60 × 10−6 5.85 × 10−5 3.73 × 10−5

3000 1.26 × 10−5 3.74 × 10−5 1.65 × 10−5 9.43 × 10−7 3.23 × 10−5 1.80 × 10−5

4000 1.90 × 10−7 1.48 × 10−5 8.06 × 10−8 1.45 × 10−5

8000 7.21 × 10−7 6.95 × 10−7

9520 3.30 × 10−7 2.96 × 10−7

Table 8. Solving tomography problems with the randomized Kaczmarz method.

Number of Rows Residuals after 666 Iterations
No Initial Shuffle With Initial Shuffle

i Parallel Beam Fan Beam Seismic Parallel Beam Fan Beam Seismic

40 1.34 × 10−6 6.32 × 10−8 5.12 × 10−4 9.04 × 10−6 1.31 × 10−16 3.30 × 10−17

50 2.57 × 10−5 6.65 × 10−8 5.78 × 10−4 8.31 × 10−5 6.11 × 10−17 5.72 × 10−11

100 3.02 × 10−4 9.44 × 10−5 3.93 × 10−4 2.63 × 10−4 3.11 × 10−4 6.47 × 10−5

200 1.46 × 10−3 8.01 × 10−4 2.51 × 10−3 7.35 × 10−4 6.37 × 10−4 3.98 × 10−4

300 2.36 × 10−3 2.74 × 10−3 2.92 × 10−3 1.43 × 10−3 1.36 × 10−3 3.99 × 10−4

360 2.62 × 10−3 2.22 × 10−3 3.21 × 10−3 2.01 × 10−3 1.60 × 10−3 3.73 × 10−4

380 2.92 × 10−3 2.34 × 10−3 3.09 × 10−3 2.20 × 10−3 1.64 × 10−3 3.48 × 10−4

400 3.39 × 10−3 2.52 × 10−3 3.26 × 10−3 1.56 × 10−3 1.65 × 10−3 2.58 × 10−4

420 3.26 × 10−3 2.83 × 10−3 3.74 × 10−3 2.36 × 10−3 1.29 × 10−3 2.61 × 10−4

440 3.63 × 10−3 2.60 × 10−3 3.38 × 10−3 2.22 × 10−3 1.62 × 10−3 2.04 × 10−4

500 3.17 × 10−3 3.14 × 10−3 3.10 × 10−3 2.08 × 10−3 9.14 × 10−4 2.02 × 10−4

1000 2.19 × 10−3 2.09 × 10−3 1.29 × 10−3 1.58 × 10−4 1.14 × 10−4 7.45 × 10−5

2000 4.40 × 10−4 8.05 × 10−4 3.62 × 10−4 1.57 × 10−5 6.40 × 10−5 4.38 × 10−5

3000 2.06 × 10−5 4.36 × 10−5 1.94 × 10−5 1.95 × 10−6 4.87 × 10−5 2.07 × 10−5

4000 4.26 × 10−7 1.88 × 10−5 1.84 × 10−7 2.03 × 10−5

8000 9.80 × 10−7 1.07 × 10−6

9520 3.85 × 10−7 3.60 × 10−7
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6. Concluding Remarks

Although Kaczmarz method has been well known for many years, the Kaczmarz
anomaly phenomenon was observed only recently. This is, perhaps, because it requires a
certain randomness of the rows’ directions. A major application of Kaczmarz method is
to solve large sparse linear systems that arise in computerized tomography. Hence, it is
important to expose the extent of the phenomenon when solving such problems. The theory
presented in the paper explains the reasons behind the anomaly, while the experiments
display its nature.

The Kaczmarz anomaly phenomenon is observed by watching how the number of
rows changes the asymptotic rate of convergence. Another property that affects the rate
of convergence is row ordering. The initial ordering of tomography problems is often
rather poor, which yields a slow rate of convergence. A common remedy that helps to
overcome this difficulty is an initial random shuffle. The shuffle is likely to improve the
randomality of the rows’ directions and, therefore, to sharpen the anomaly phenomenon.
The experiments that we have done illustrate this feature.

Repeating the use of a random shuffle at each iteration gives rise to a new randomized
algorithm, the Shuffled Kaczmarz method of Oswald and Zhou [21,22], which is not
inferior to the celebrated Randomized Kaczmarz method of Strohmer and Vershynin [24].
However, one consequence of our experiments is that randomized methods are not faster
than Kaczmarz method with one initial random shuffle.

In our experiments, the random shuffle is based on a random permutations generator.
Yet, following Herman and Meyer [15], it is possible to construct an improved initial shuffle
that takes advantage of the special structure of tomography problems. The idea is to seek a
permutation that improves the orthogonality between adjacent rows. In general, there is no
easy way to achieve this task, but the special structure of tomography problems enables
effective solutions of this problem, e.g., [11,15,17,18]. As with random shuffles, the use of
optimal ordering is expected to sharpen the anomaly phenomenon. However, the testing
of this issue is left to future research.
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